Relational Software Incorporated O I EI \C LE

ORACLE

Users’ Guide

Relational Software Incorporated
|
RSI-100

ORACLE

USERS-GUIDE

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE

SQOL LANGUAGE

USER'S GUIDE

Oracle User's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

SQL

LANGUAGE USER'S GUIDE

TABLE OF CONTENTS

INTRODUCTION 1-1
DATA BASE CONCEPTS 1-3
QUERY FACILITIES 1-6
DATA MANIPULATION FACILITIES 1-38
DATA DEFINITION FACILITIES 1-45
DATA STRUCTURES 1-55
DATA INDEPENDENCE 1-59
TREE-STRUCTURED TABLES 1-61
SECURITY FACILITIES 1-71
DATA DICTIONARY STRUCTURE 1-82

CONCURRENCY CONTROL FACILITIES 1-94

This
facilities for query,
data control through a series of examples.

SQL LANGUAGE - USER'S GUIDE
SQL LANGUAGE - EXAMPLES

INTRODUCTION

of the M"User's Guide"™ introduces the SQL
data manipulation, data definition and
The examples are

section

based on the following database:

e e - e e +
EMP ! EMPNO | ENAME | JOB | SAL ! COMM | DEPTNO |
e i ——————— = e +
fommmm— e —————————— ———————— == +
DEPT ! DEPTNO | DNAME | LOC | EMPCNT |
o —————— e o e +
+

BONUS | ENAME | JOB | SAL | COMM |

The EMP table contains
employee's number, name, job title,
department number. The department table
department's number, name, location, and
employees 1in the
extract of the
course of the examples,
a project number column and a supervisor column,
tables are added.
project number, name,
projects to employees
employees,
The

information on employees, giving the
salary, commission, and
gives the
a count of the
department. The BONUS table contains an
information in the EMP table. Through the
the EMP table is expanded to contain
and two new
The PROJ table contains columns for the
and budget. The PE table relates
where one project can have many
and one employee can be working on many projects.
expanded EMP table and the two added tables are as

follows:

EMP

PROJ

PE

PROJNO | PNAME | BUDGET |

The examples in this section of the documentation were
produced by executing the ORACLE User Friendly Interface
(UFI) and capturing the output in hard-copy form. The actual
output has been post-processed to add page numbers and to
remove the SQL prompts at the beginning of each line. The
command file which produces this output is provided with each
ORACLE installation. It contains the comments interspersed
with the SQL statements. This section of the documentation
serves as a self-tutorial in the facilities of SQL as
implemented in ORACLE.

ORACLE accepts SQL statements in free format. The
arrangement of each SQL clause on a separate line and
indentation in the following examples is used for clarity
only.

1. DATA BASE CONTENTS

This section of the manual describes the structure and
content of the example PERSONNEL data base.

1.1 Dictionary Contents

ORACLE's integrated data dictionary can be queried using
standard SQL query facilities.

Example 1-1: List the names of the user tables in the data
base.

SQL>SELECT TABLE

SQL>FROM TAB;
SQL>/

Example 1-2: List the names of the columns
department and employee tables.

SQL>SELECT *

SQL>FROM coL
SQL>WHERE TABLE = 'DEPT';
SQL>/

TABLE COLUMN

DEPT DEPTNO

DEPT DNAME

DEPT LoC

DEPT EMPCNT
SQL>SELECT *

SQL>FROM COL

SQL>WHERE TABLE = 'EMP';
SQL>/

TABLE COLUMN

EMP EMPNO

EMP ENAME

EMP JOB

EMP SAL

EMP COMM

EMP DEPTNO

6 records selected.

of

the

of

rows of the

the DEPT

EMP

COMM DEPTNO

1.2 Data Base Contents
Example 1-3: List all the columns and rows
table.
SQL>SELECT * FROM DEPT;
SQL>/
DEPTNO DNAME LOC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES CHICAGO
40 OPERATIONS BOSTON
Example 1-4: List all the columns and
table.
SQL>SELECT * FROM EMP;
SQL>/
EMPNO ENAME JOB SAL
7369 SMITH CLERK $800.00
7499 ALLEN SALESMAN $1,600.00 $300.00
7521 WARD SALESMAN $1,250.00 $500.00
7566 JONES MANAGER $2,975.00
7654 MARTIN SALESMAN $1,250.00 $1,400.00
7698 BLAKE MANAGER $2,850.00
7782 CLARK MANAGER $2,450.00
7788 SCOTT ANALYST $3,000.00
7839 OATES PRESIDENT $5,000.00
7844 TURNER SALESMAN $1,500.00 $0.00
7876 ADAMS CLERK $1,100.00
7900 JAMES CLERK $950.00
7902 FORD ANALYST $3,000.00
7934 MILLER CLERK $1,300.00

14 records selected.

2. QUERY PACILITIES

This section of the manual contains a description of the
query facilities of ORACLE.

2.1 Query Block

The SELECT clause lists the columns to be returned. The
FROM clause lists the tables involved in the query. The
WHERE clause specifies the selection criteria.

Example 2-1: Find the name of department 10.

SQL>SELECT DNAME

SQL>FROM DEPT
SQL>WHERE DEPTNO=10;
sQL>/

DNAME

ADMINISTRATION

The SELECT clause can contain several columns. Character
string constants are enclosed by single quotation marks.

Example 2-2: List the names, numbers, and departments of
all clerks.

SQL>SELECT ENAME,EMPNO,DEPTNO

SQL>FROM EMP
SQL>WHERE JOB = 'CLERK';
sQL>/

ENAME EMPNO DEPTNO

SMITH 7369 20
ADAMS 7876 20
MILLER 7934 10

JAMES 7900 30

If all columns of the row are to be returned, SELECT * is
specified.
Example 2-3: List all the columns in the employee table

for employees in department 30.

SQL>SELECT *

SQL>FROM EMP

SQL>WHERE DEPTNO = 30;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7698 BLAKE MANAGER $2,850.00 30
7654 MARTIN SALESMAN $1,250.00 $1,400.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30
7900 JAMES CLERK $950.00 30

6 records selected.

The WHERE clause can compare two fields of a row with each
other.

Example 2-4: List the name, salary, and commission of each
employee whose commission is greater than his
salary. .

SQL>SELECT ENAME,SAL,COMM

SQL>FROM EMP

SQL>WHERE COMM > SAL;
SQL>/

ENAME SAL comMm

MARTIN $1,250.00 $1,400.00

The absence of a WHERE clause causes all rows to be
returned.

Example 2-5: List all columns and all rows in the DEPT
table.

SQL>SELECT *

SQL>FROM DEPT;
SQL>/
DEPTNO DNAME LocC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES CHICAGO
40 OPERATIONS BOSTON

2.2 Logical ExpresSions

Predicates within the WHERE clause may be connected by the
boolean operators, AND and OR.

Example 2-6: List the name, job title, and salary of all
employees in department 20 that make more

than $2,000.

SQL>SELECT ENAME,JOB,SAL
SQL>FROM EMP

SQL>WHERE DEPTNO = 20
SQL> AND SAL > 2000;

sSQL>/

ENAME JOB SAL
JONES MANAGER $2,975.00
SCOTT ANALYST $3,000.00

FORD ANALYST $3,000.00

The BETWEEN operator simplifies the syntax for specifying a

range.

The

predicates SAL >= 1200 AND SAL <= 1400 are

simplified to SAL BETWEEN 1200 AND 1400.

Example 2-7:

List the name, job title, and salary of all
employees who earn between $1,200 AND $1,400.

SQL>SELECT ENAME ,JOB,SAL

SQL>FROM EMP

SOL>WHERE SAL BETWEEN 1200 AND 1400;
SQL>/

ENAME JOB SAL

WARD SALESMAN $1,250.00

MARTIN SALESMAN $1,250.00

MILLER CLERK $1,300.00

Example 2-8:

List the name,

job, salary, and commission of

each employee whose job title begins with MAN
or whose salary is greater than 3000 a month.

SQL>SELECT ENAME,JOB,SAL,COMM

SQL>FROM EMP

SQL>WHERE JOB = 'MAN...'

SQL> OR SAL > 3000;

sSQL>/

ENAME JOB SAL COMM
JONES MANAGER $2,975.00

BLAKE MANAGER $2,850.00

CLARK MANAGER $2,450.00

OATES PRESIDENT $5,000.00

Example 2-9: List the department number, name, job title,
salary and commission of each employee in
department 30 whose salary is greater than
his commission.

SQL>SELECT DEPTNO,ENAME,JOB,SAL, COMM
SQL>FROM EMP

SQL>WHERE SAL > COMM

SQL> AND DEPTNO = 30;

SQL>/

DEPTNO ENAME JOB SAL COMM
30 ALLEN SALESMAN $1,600.00 $300.00
30 WARD SALESMAN $1,250.00 $500.00
30 TURNER SALESMAN $1,500.00 $0.00

Predicates within a WHERE clause form logical expressions
with square brackets [] used to establish precedence.

Example 2-10: List the department number, name, job title,
salary, and commission of all analysts, or
all people in department 10 who earn more

than $2,500.

SQL>SELECT DEPTNO,ENAME,JOB,SAL,COMM

SQL>FROM EMP
SQL>WHERE JOB = 'ANALYST'
SQL> OR [SAL > 2500 AND DEPTNO = 10];
sQL>/
DEPTNO ENAME JOB SAL COMM
20 SCOTT ANALYST $3,000.00
20 FORD ANALYST $3,000.00

10 OATES PRESIDENT $5,000.00

Example 2-11: List the department number, name, job title,
salary, and commission of employees in
department 10 who are either analysts or earn

more than $2,500.

SQL>SELECT DEPTNO,ENAME,JOB,SAL,COMM

SQL>FROM EMP
SQL>WHERE [JOB = 'ANALYST'
SQL> OR SAL > 2500] AND DEPTNO = 10;

SQL>/

DEPTNO ENAME JOB SAL COMM

10 OATES PRESIDENT $5,000.00

2.3 Not Conditions
Predicates within a WHERE clause may be negated.
Example 2-12: List the name, salary, commission, Jjob title,

and department number of employees in
department 30 who are not a salesman.

SQL>SELECT ENAME,SAL,COMM,JOB,DEPTNO

SQL>FROM EMP

SQL>WHERE JOB "= 'SALESMAN'

SQL> AND DEPTNO = 30;

SQL>/

ENAME SAL COMM JOB DEPTNO
BLAKE $2,850.00 MANAGER 30
JAMES $950.00 CLERK 30

Entire logical expressions may be negated.

Example 2-13: List the name, salary, commission, job title,
and department number of employees in
department 30 who are not a salesman or do
not earn more than $1,500.

SQL>SELECT ENAME,SAL,COMM,JOB,DEPTNO

SQL>FROM EMP

SQL>WHERE NOT [JOB = 'SALESMAN' OR.SAL > 1500]
SQL> AND DEPTNO = 30;

SQL>/

ENAME SAL COMM JOB DEPTNO

JAMES $950.00 CLERK 30

2.4 Set Inclusion Operator

A predicate in a WHERE clause may test a field for inclusion
in a set of constant literal values. A set of constant
literal values is enclosed within angle brackets < >.

Example 2-14: List the name and department number of
employees in departments 10 and 30.

SQL>SELECT ENAME,DEPTNO

SQL> FROM EMP
SQL>WHERE DEPTNO IN <10,30>;
sSQL>/

ENAME DEPTNO

CLARK 10
MILLER 10
OATES 10
ALLEN 30
WARD 30
BLAKE 30
MARTIN 30
TURNER 30
JAMES 30

9 records selected.

Example 2-15: List all fields from the department table for
departments that are located in either
Chicago or New York.

SQL>SELECT *

SQL> FROM DEPT

SQL>WHERE LOC IN <'CHICAGO','NEW YORK'>;

sSoL>/

DEPTNO DNAME LOC EMPCNT
30 SALES CHICAGO

10 ADMINISTRATION NEW YORK

2.5 Nested Query

The result of one query may be used in the WHERE clause of
another dJuery. The inner query returns one or a set of
values. The outer query uses this result as if it were
given a set of constant literal values. Query blocks may be

nested to any number of levels.

Example 2-16: List the name and job of employees who have
the same job as Jones.

SQL>SELECT ENAME,JOB

SQL>FROM EMP

SQL>WHERE JOB IN

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'JONES';
SQL>/

JONES MANAGER
BLAKE MANAGER
CLARK MANAGER

Example 2-17: List the name, Jjob title, and salary of
employees who have the same job and salary as

Ford.
SQL>SELECT ENAME,JOB,SAL
SQL>FROM EMP
SQL>WHERE <JOB,SAL> =
SQL> SELECT JOB,SAL
SQL> FROM EMP
SQL> WHERE ENAME = 'FORD';
SQL>/
ENAME JOB SAL
SCOTT ANALYST $3,000.00

FORD ANALYST $3,000.00

1-14

Inner query blocks may be connected by the boolean operators
AND and OR to form compound nested queries.

Example 2-18: List the name, job, and department of
employees who have the same job as Jones, oOr
a salary greater than or equal to Ford.

SQL>SELECT ENAME,JOB ,DEPTNO,SAL

SQL>FROM EMP

SQL>WHERE JOB 1IN

sSQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'JONES';
SQL>OR SAL >=

SQL> SELECT SAL

SQL> FROM EMP

SQL> WHERE ENAME = 'FORD';
sQL>/

ENAME JOB DEPTNO SAL
JONES MANAGER 20 $2,975.00
BLAKE MANAGER 30 $2,850.00
CLARK MANAGER 10 $2,450.00
SCOTT ANALYST 20 §$3,000.00
OATES PRESIDENT 10 $5,000.00
FORD ANALYST 20 $3,000.00

6 records selected.

2.6 ORDER BY

The ORDER BY clause specifies major and minor sort fields in
ascending or descending order. Ascending order is default.

Example 2-19: List the name, Jjob, department, and employee
number of employees in a department whose
number is greater than or equal to 20, in
order of employee name.

SQL>SELECT ENAME,JOB,DEPTNO,EMPNO
SQL>FROM EMP

SQL>WHERE DEPTNO >= 20

SQL>ORDER BY ENAME;

SQL>/

ENAME JOB DEPTNO EMPNO
ADAMS CLERK 20 7876
ALLEN SALESMAN 30 7499
BLAKE MANAGER 30 7698
FORD ANALYST 20 7902
JAMES CLERK 30 7900
JONES MANAGER 20 7566
MARTIN SALESMAN T 30 7654
SCOTT ANALYST 20 7788
SMITH CLERK 20 7369
TURNER SALESMAN 30 7844
WARD SALESMAN 30 7521

11 records selected.

L4

1-16

Example 2-20:

List the department,
all employees,
ascending

order

salary, name, and job of
in descending order by salary,
by Jjob within salary, and

ascending order by name within job.

SQL>SELECT DEPTNO, SAL,JOB, ENAME

SQL>FROM

EMP

SQL>ORDER BY SAL

sQL>/

DEPTNO

SAL

JOB

DESC,JOB,ENAME;

30
20

$5,000.00
$3,000.00
$3,000.00
$2,975.00
$2,850.00
$2,450.00
$1,600.00
$1,500.00
$1,300.00
$1,250.00
$1,250.00
$1,100.00

$950.00

$800.00

PRESIDENT
ANALYST
ANALYST
MANAGER
MANAGER
MANAGER
SALESMAN
SALESMAN
CLERK
SALESMAN
SALESMAN
CLERK
CLERK
CLERK

14 records selected.

ALLEN
TURNER
MILLER
MARTIN
WARD
ADAMS
JAMES
SMITH

Expressions can be specified within the ORDER BY clause.

Example 2-21:

ra

tio of

commission.

' SALESMAN'

List all salesman in ascending order of the
their

salary divided by their

ENAME, SAL/COMM, SAL, COMM

$1,600.00

SQL>SELECT

SQL>FROM EMP
SQL>WHERE JOB =
SQL>ORDER BY SAL/COMM
SQL>/

ENAME SAL/COMM
MARTIN .893

WARD 2.500

ALLEN 5.333
TURNER ~.000

$1,500.00

$1,400.00
$500.00
$300.00
$0.00

2.7 UNIQUE

A query returns a set of rows that satisfy the WHERE clause.
Duplicate rows are not eliminated unless SELECT UNIQUE is
specified.

Example 2-22: List all the different jobs in the job table.

SQL>SELECT UNIQUE JOB
SQL>FROM EMP;
SQL>/

CLERK
SALESMAN
MANAGER
ANALYST
PRESIDENT

If a WHERE clause has multiple predicates connected by an
OR, there exists the possibility that a single row may
satisfy both predicates and be returned twice in the query
result. UNIQUE specified within the SELECT clause

eliminates this duplication.
Example 2-23: List the name and job of employees who are in

department 30, or employees who are managers.
Sort by employee name.

SQL>SELECT ENAME,JOB,DEPTNO

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
SQL> OR JOB = 'MANAGER'
SQL>ORDER BY ENAME;
SQL>/

ENAME JOB DEPTNO
ALLEN SALESMAN 30
BLAKE MANAGER 30
BLAKE MANAGER 30
CLARK MANAGER 10
JAMES CLERK 30
JONES MANAGER 20
MARTIN SALESMAN 30
TURNER SALESMAN 30
WARD SALESMAN 30

9 records selected.

17

List the name and job of employees who are in
department 30 or, employees who are managers.
Eliminate duplicate rows and sort the result

by employee name.

Example 2-24:

SQL>SELECT UNIQUE ENAME,JOB,DEPTNO

SQL>FROM EMP

SQL>WHERE DEPTNO = 30

SQL> OR JOB = 'MANAGER'

SQL>ORDER BY ENAME;

SQL>/

ENAME JOB DEPTNO

ALLEN SALESMAN 30

BLAKE MANAGER 30

CLARK MANAGER 10

JAMES CLERK 30

JONES MANAGER 20

MARTIN SALESMAN 30

TURNER SALESMAN 30

WARD SALESMAN 30

8 records selected.

Example 2-25: List the salary, job title, name, and
department number for all employees in
departments that have salesmen. Sort the

results by salary in descending order.

SQL>SELECT SAL,JOB,ENAME,DEPTNO
SQL>FROM EMP

SQL>WHERE DEPTNO IN

SQL> SELECT UNIQUE DEPTNO
SQL> FROM EMP

SQL> WHERE JOB = 'SALESMAN';
SQL>ORDER BY SAL DESC;

sSQL>/

SAL JOB ENAME DEPTNO
$2,850.00 MANAGER BLAKE 30
$1,600.00 SALESMAN ALLEN 30
$1,500.00 SALESMAN TURNER 30
$1,250.00 SALESMAN WARD 30
$1,250.00 SALESMAN MARTIN 30

$950.00 CLERK JAMES 30

6 records selected.

2.8 Arithmetic Expressions

The SELECT, WHERE, and HAVING clauses may all contain
arithmetic expressions containing fields and constants.

Example 2-26: List the name, salary, commission, and sum of

salary plus commission of employees in
department 30.

SQL>SELECT ENAME,SAL,COMM,SAL + COMM

SQL>FROM EMP
SQL>WHERE DEPTNO = 30;

SQL>/

ENAME SAL COMM SAL+COMM
ALLEN $1,600.00 $300.00 $1,900.00
WARD $1,250.00 $500.00 $1,750.00

BLAKE $2,850.00
MARTIN $1,250.00 $1,400.00 $2,650.00
TURNER $1,500.00 $0.00 $1,500.00
JAMES $950.00

6 records selected.

Example 2-27: List the name, salary, and commission of
employees whose commission is greater than or
equal to 25% of their salary.

SQL>SELECT ENAME,SAL,COMM

SQL>FROM EMP

SQL>WHERE COMM >= 0.25 * SAL;
SQL>/

ENAME SAL COMM
WARD $1,250.00 $500.00

MARTIN $1,250.00 $1,400.00

Parentheses are used to establish precedence within
arithmetic expressions.

Example 2-28: List the name, salary, commission, and 1.25
times salary plus two-thirds of the

commission of all salesmen.

SQL>SELECT ENAME ,SAL,COMM, ((SAL * 1.25) + (COMM * (2/3)))
SQL>FROM EMP

SQL>WHERE JOB = 'SALES...';

sQoL>/

ENAME SAL COMM ((SAL*1.25)+(COMM* (2/3)))
WARD $1,250.00 $500.00 $1,895.83
MARTIN $1,250.00 $1,400.00 $2,495.83

TURNER $1,500.00 $0.00 $1,875.00

2.9 Built-In Punctions

ORACLE provides several built-in functions that may be used
in either SELECT or HAVING clauses.

Example 2-29: Find the average salary of all employees who
are clerks.

SQL>SELECT AVG(SAL)

SQL>FROM EMP
SQL>WHERE JOB = 'CLERK';
SQL>/

AVG (SAL)

$1,037.50

Example 2-30: Find the maximum, average, and minimum salary
of employees in department 10.

SQL>SELECT MAX(SAL) ,AVG(SAL) ,MIN(SAL)

SQL>FROM EMP
SQL>WHERE DEPTNO = 10;
SQL>/

MAX (SAL) AVG (SAL) MIN(SAL)

$5,000.00 $2,916.67 $1,300.00

Example 2-31: Find the sum of all salesmen's commissions.

SQL>SELECT SUM(COMM)

SQL>FROM EMP

SQL>WHERE JOB = 'SALESMAN';
SQL>/

SUM (COMM)

$2,200.00

Example 2-32: Find the number of employees in department

30.
SQL>SELECT COUNT(*)
SQL>FROM EMP
SQL>WHERE DEPTNO = 30;
SQL>/
COUNT(*)
6

Built—-in functions can be used in arithmetic expressions.

Example 2-33: Compute the average annual salary plus
commission for all salesmen.

SQL>SELECT AVG(SAL + COMM) * 12

SQL>FROM EMP
SQL>WHERE JOB = 'SALESMAN'
sQL>/

AVG (SAL+COMM) *12

$23,400.00

ORACLE allows functions to be applied to the results of
other built-in functions.

Example 2-34: List the name, job, and salary of the
employee who has the largest salary.

SQL>SELECT ENAME,JOB,SAL

SQL>FROM EMP

SQL>WHERE SAL =

SQL> SELECT MAX(SAL)
SQL> FROM EMP;
SQL>/

ENAME JOB SAL

OATES PRESIDENT $5,000.00

2.10 GROUP-BY

A table may be partitioned into groups according to the
values in a column or set of columns. A built-in function

may then be applied to each group. When a built-in function
is used, each item in the SELECT clause must be a unique

property of the group.

Example 2-35: List the department number and average salary
of each department.

SQL>SELECT DEPTNO,AVG(SAL)

SQL>FROM EMP
SQL>GROUP BY DEPTNO;
SQL>/

DEPTNO AVG(SAL)

10 $2,916.67
20 $2,175.00
30 $1,566.67

Example 2-36: List the department number and average annual
salary of each departments employees,
excluding managers salaries.

SQL>SELECT DEPTNO,AVG(SAL) * 12

SQL>FROM EMP

SQL>WHERE NOT JOB = 'MAN...'
SQL>GROUP BY DEPTNO;

SQL>/

DEPTNO AVG(SAL)*12
10 $37,800.00
20 $23,700.00
30 $15,720.00

A table can be partitioned into groups based on the values
in more than one column.

Example 2-37: Divide all employees into groups by
department, and by job within department.
Count the employees in each group and compute

each group's average salary.

SQL>SELECT DEPTNO,JOB,COUNT(*) ,AVG(SAL) * 12

SQL>FROM EMP

SQL>GROUP BY DEPTNO,JOB;

sQL>/

DEPTNO JOB COUNT(*) AVG(SAL)*12
10 CLERK 1 $15,600.00
10 MANAGER 1 $29,400.00
10 PRESIDENT 1 $60,000.00
20 ANALYST 2 $36,000.00
20 CLERK 2 $11,400.00
20 MANAGER 1 $35,700.00
30 CLERK 1 $11,400.00
30 MANAGER 1 $34,200.00
30 SALESMAN 4 $16,800.00

9 records selected.

Built-in functions can be applied to the results of other
group functions to form functions of functions.

Example 2-38: Total the salaries of all the departments and
1ist the department with the maximum total.

SQL>SELECT DEPTNO,MAX (SUM(SAL))

SQL>FROM EMP
SQL>GROUP BY DEPTNO;
SQL>/

DEPTNO MAX(SUM(SAL))

30 $10,875.00

2.11 HAVING

After a table has been partitioned into groups, a predicate
or set of predicates in a HAVING clause can be applied to

the groups.

Example 2-39: List the average annual salary for all job
groups having more than 2 employees in the

group.

SQL>SELECT JOB,AVG(SAL) * 12
SQL>FROM EMP

SQL>GROUP BY JOB

SQL>HAVING COUNT(*) > 2;

SQL>/

JOB AVG(SAL) *12
CLERK $12,450.00
MANAGER $33,100.00
SALESMAN $16,800.00

A query block may contain both a WHERE and HAVING clause.
First, the WHERE clause is applied to qualify rows; second,
the groups are formed and the built-in functions are
computed; third, the HAVING clause is applied to qualify

groups.

Example 2-40: List all the departments that have more than
two clerks.

SQL>SELECT DEPTNO
SQL>FROM EMP
SQL>WHERE JOB = 'CLERK'
SQL>GROUP BY DEPTNO
SQL>HAVING COUNT(*) >= 2;
SQL>/

DEPTNO

25

1-26

HAVING clauses may contain query blocks.

Example 2-41:
that

greater

department 20.

SQL>SELECT DEPTNO, AVG (SAL)

SQL>FROM EMP
SQL>GROUP BY DEPTNO
SQL>HAVING AVG(SAL)
SQL>

SQL> FROM
SQL> WHERE
sSQL>/

DEPTNO AVG (SAL)

10 $2,916.67

2.12 NULL Conditions

SELECT AVG (SAL)

DEPTNO = 20;

Predicates within a WHERE clause can
null conditions within a column.

Example 2-42:

List the

name, salary,

title of all employees
commissions.

SQL>SELECT ENAME, SAL,COMM,JOB

SQL>FROM EMP
SQL>WHERE COMM = NULL;
sSQL>/

ENAME SAL

SMITH $800.00

JONES $2,975.00

BLAKE $2,850.00

CLARK $2,450.00

SCOTT $3,000.00

OATES $5,000.00

ADAMS $1,100.00

JAMES $950.00

FORD $3,000.00
MILLER $1,300.00

10 records selected.

COMM JOB

CLERK
MANAGER
MANAGER
MANAGER
ANALYST
PRESIDENT
CLERK
CLERK
ANALYST
CLERK

average

List the departments and their average salary
have a

salary than

explicitly test for

commission and Jjob
who do not receive

Example 2-43: List the name, salary, commission, and Jjob
title of those employees who receive a

commission.

SQL>SELECT ENAME, SAL,COMM,JOB

SQL>FROM EMP
SQL>WHERE NOT COMM = NULL;

SQL>/

ENAME SAL COMM JOB

ALLEN $1,600.00 $300.00 SALESMAN
WARD $1,250.00 $500.00 SALESMAN
MARTIN $1,250.00 $1,400.00 SALESMAN
TURNER $1,500.00 $0.00 SALESMAN

Example 2-44: If a predicate within a WHERE or HAVING
clause can be expressed without using NOT or
NULL, it is usually more efficient.

SQL>SELECT ENAME,SAL,COMM,JOB

SQL>FROM EMP

SQL>WHERE COMM >= O0;

SQL>/

ENAME SAL COMM JOB
ALLEN $1,600.00 $300.00 SALESMAN
WARD $1,250.00 $500.00 SALESMAN

MARTIN $1,250.00 $1,400.00 SALESMAN
TURNER $1,500.00 $0.00 SALESMAN

Null values in the data base are treated as unknowns in the
evaluation of logical expressions. Only those rows that are
known to satisfy the WHERE clause are returned as the result

of a query.

List all columns of the employee table for
employees in department 30 or employees whose
commission is less than or equal to $1,000.

Example 2-45:

SQL>SELECT *

SQL>FROM EMP

SQL>WHERE DEPTNO = 30

SQL> AND COMM <= 1000;

sSQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30

List all the columns of the employee table

Example 2-46:
for employees in department 30 or employees

whose commission is less than or equal to
$1,000.

SQL>SELECT *

SQL>FROM EMP

SQL>WHERE DEPTNO = 30

SQL> OR COMM <= 1000;

sQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7698 BLAKE MANAGER $2,850.00 30
7654 MARTIN SALESMAN $1,250.00 $1,400.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30
7900 JAMES CLERK $950.00 30
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,250.00 $500.00 30
7844 TURNER SALESMAN $1,500.00 $0.00 30

9 records selected.

2.13 NULL-Function

When an expression or built-in function references a column
of a table that contains one or more null values, the result
of the expression or built-in function is null.

In the following example the expression SAL +
COMM returns a null value for all employees

that have a null commmission.

Example 2-47:

SQL>SELECT ENAME,JOB,SAL,COMM,SAL + COMM
SQL>FROM EMP

SQL>WHERE DEPTNO = 30

SQL>/

ENAME JOB SAL COMM SAL+COMM
ALLEN SALESMAN $1,600.00 $300.00 $1,900.00
WARD SALESMAN $1,250.00 $500.00 $1,750.00
BLAKE MANAGER $2,850.00

MARTIN SALESMAN $1,250.00 $1,400.00 $2,650.00
TURNER SALESMAN $1,500.00 $0.00 $1,500.00
JAMES CLERK $950.00

6 records selected.

The ORACLE Null-Value Function NVL can be used to assign a
temporary value to nulls encountered within an expression.

Assign null commissions a temporary value of

Example 2-48:
zero within the expression SAL + COMM.

SQL>SELECT ENAME,JOB,SAL,COMM,SAL + NVL(COMM,0)
SQOL>FROM EMP

SQL>WHERE DEPTNO = 30

SQL>/

ENAME JOB SAL COMM SAL+NVL (COMM,0)
ALLEN SALESMAN $1,600.00 $300.00 $1,900.00
WARD SALESMAN $1,250.00 $500.00 $1,750.00
BLAKE MANAGER $2,850.00 $2,850.00
MARTIN SALESMAN $1,250.00 $1,400.00 $2,650.00
TURNER SALESMAN $1,500.00 $0.00 $1,500.00
JAMES CLERK $950.00 $950.00

6 records selected.

The expression SAL + NVL(COMM,0) will return a value equal
to SAL when COMM is null.

Example 2-49: Null values do not participate in the
computation of built-in functions.

SQL>SELECT SUM(SAL),COUNT(SAL),SUM(COMM),COUNT(COMM)

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
sSQL>/

$9,400.00 6 $2,200.00 4

In the above example the count of people who receive a
salary, (4), is greater than the number of people that
receive a commission, (6), because null commissions were not
counted.

Example 2-50: List the average commission of employees who
receive a commission, and the average

commission of all employees (treating
employees who do not receive a commission as
. receiving a zero commission).

SQL>SELECT AVG(COMM),AVG(NVL(COMM,O))

SQL>FROM EMP
SQL>WHERE DEPTNO = 30
SQL>/

AVG (COMM) AVG (NVL (COMM,0))

$550.00 $366.67

Example 2-51:

List the average commission of employees who
receive a commission, and the average
commission of all employees (treating
employees who do not receive a commission as
receiving a $1000 commission).

SQL>SELECT AVG(COMM) ,AVG(NVL(COMM,1000))
SQL>FROM EMP
SQL>WHERE DEPTNO = 30

SQL>/

AVG(COMM) AVG(NVL(COMM,1000))

$550.00

Example 2-52:

For department 30, list the average salary of
employees that receive a salary, the average
commission of employees that receive a
commission, the average salary plus
commission of only those employees that
receive a commission, and average salary plus
commission of all employees including those
who do not receive a commission.

SQL>SELECT AVG(SAL),AVG(COMM),AVG(SAL+COMM),AVG(SAL+NVL(COMM,0))

SQL>FROM EMP
SQL>WHERE DEPTNO = 30

sSQL>/

AVG(SAL) AVG(COMM) AVG(SAL+COMM) AVG (SAL+NVL (COMM,0))

$1,566.67

$550.00 $1,950.00 $1,933.33

2.14 Join Query

A query may return values from more than one table.
FROM clause may list several tables. The WHERE cla
specifies the relationship on which the tables are to
joined.

Example 2-53: List the names of all employees and
locations of their departments.

SQL>SELECT ENAME,LOC

SQL>FROM EMP,DEPT
SQL>WHERE EMP.DEPTNO = DEPT.DEPTNO;
SQL>/

CLARK NEW YORK
MILLER NEW YORK
OATES NEW YORK
SMITH SAN FRANCISCO
JONES SAN FRANCISCO
ADAMS SAN FRANCISCO
SCOTT SAN FRANCISCO
FORD SAN FRANCISCO
ALLEN CHICAGO
WARD CHICAGO
BLAKE CHICAGO
MARTIN CHICAGO
TURNER CHICAGO
JAMES CHICAGO

14 records selected.

Example 2-54: List names of employees and all the fields
the department table for employees
departments located in Chicago.

SQL>SELECT ENAME ,DEPT.*

SQL>FROM EMP,DEPT

SQL>WHERE EMP.DEPTNO = DEPT.DEPTNO
SQL> AND LOC = 'CHICAGO';

sSQL>/

ENAME DEPTNO DNAME LOC EMPCNT
ALLEN 30 SALES CHICAGO
WARD 30 SALES CHICAGO
BLAKE 30 SALES CHICAGO
MARTIN 30 SALES CHICAGO
TURNER 30 SALES CHICAGO
JAMES 30 SALES CHICAGO

6 records selected.

The
use
be

the

of
in

predicates in a WHERE clause may compare data values in
columns from any number of tables in a join query. ’

Example 2-55: List the names and jobs of employees who are
not salesmen and work for departments that

are located in Chicago.

SQL>SELECT ENAME,JOB,LOC

SQL>FROM DEPT, EMP

SQL>WHERE EMP.DEPTNO=DEPT.DEPTNO

SQL> AND LOC = 'CHICAGO'

SQL> AND JOB “= 'SALESMAN';

SQL>/

ENAME JOB LoC

BLAKE MANAGER CHICAGO

JAMES CLERK CHICAGO

Example 2-56: List the name, location, salary, Jjob of
employees located in Chicago who have the
same Jjob as Allen. Sort the results by

employee name.

SQL>SELECT ENAME,LOC,SAL,JOB
SQL>FROM EMP,DEPT

SQL>WHERE LOC = 'CHICAGO'

SQL> AND EMP.DEPTNO = DEPT.DEPTNO
SQL> AND JOB =

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'ALLEN';
SQL>ORDER BY ENAME;

sSQL>/

ENAME LOC SAL JOB
ALLEN CHICAGO $1,600.00 SALESMAN
MARTIN CHICAGO $1,250.00 SALESMAN
TURNER CHICAGO $1,500.00 SALESMAN

WARD CHICAGO $1,250.00 SALESMAN

34

2.15 Self-Join

A table may be joined with itself by listing the same table
more than once in the FROM clause and associating a
temporary label with each table. This label is used in
place of the table name in qualifying references to columns
within the SELECT and FROM clauses in the query block.

Example 2-57: For each employee whose salary exceeds his
department's managers's salary, list the
employee's name and salary and the manager's
name and salary. Within the context of this
query, the EMP table is treated logically as
if it were two separate tables named WORKER
and MGR. However, the EMP table is "not"

physically duplicated.

SQL>SELECT WORKER.ENAME,WORKER.SAL,MGR.ENAME,MGR.SAL

SQL>FROM EMP WORKER,EMP MGR

SQL>WHERE WORKER .DEPTNO = MGR.DEPTNO

SQL> AND [MGR.JOB = 'MANAGER' AND WORKER.SAL > MGR.SAL] ;
SQL>/

ENAME SAL ENAME SAL

SCOTT $3,000.00 JONES $2,975.00
FORD $3,000.00 JONES $2,975.00
OATES $5,000.00 CLARK $2,450.00

1-35

2.16 Outer-Join

When the DEPT table is joined to the EMP table using the
join predicate DEPT.DEPTNO = EMP.DEPTNO, a department
without any employees would not satisfy the join and would
not be returned as a result of the query.

Example 2-58: List all the departments in the DEPT table.

SQL>SELECT *

SQL>FROM DEPT
SQL>/
DEPTNO DNAME LOC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES CHICAGO
40 OPERATIONS BOSTON

Example 2-59: List all the employees in the EMP table.

SQL>SELECT DEPTNO,ENAME,JOB

SQL>FROM EMP
SQL>ORDER BY DEPTNO
SQL>/

DEPTNO ENAME JOB

10 CLARK MANAGER
10 OATES PRESIDENT
10 MILLER CLERK

20 SMITH CLERK

20 JONES MANAGER
20 SCOTT ANALYST
20 ADAMS CLERK

20 FORD ANALYST
30 ALLEN SALESMAN
30 WARD SALESMAN
30 MARTIN SALESMAN .
30 BLAKE MANAGER
30 TURNER SALESMAN
30 JAMES CLERK

14 records selected.

36

Example 2-60:

SQL>SELECT DEP
SQL>FROM DEP
SQL>WHERE DEP
SQL>/

DEPTNO

Join the DEPT table to the EMP table.

T.DEPTNO,DNAME,LOC,ENAME,JOB

T, EMP
T.DEPTNO

EMP.DEPTNO

ADMINIST
ADMINIST
ADMINIST
RESEARCH
RESEARCH
RESEARCH
RESEARCH
RESEARCH
SALES
SALES
SALES
SALES
SALES
SALES

14 records sele

The result of this join does not
40 does not have any
eturn those department rows that have no

because
"outer-join",
matching employ

department
will r

RATION NEW
RATION NEW
RATION NEW
SAN
SAN
SAN
SAN
SAN

YORK A
FRANCISCO
FRANCISCO
FRANCISCO
FRANCISCO
FRANCISCO

CHICAGO
CHICAGO
CHICAGO
CHICAGO
CHICAGO
CHICAGO

cted.

ees.

JONES
ADAMS
SCOTT
FORD
ALLEN
WARD
BLAKE
MARTIN
TURNER
JAMES

MANAGER
CLERK
PRESIDENT
CLERK
MANAGER
CLERK
ANALYST
ANALYST
SALESMAN
SALESMAN
MANAGER
SALESMAN
SALESMAN
CLERK

include department 40

employees. An

Example 2-61: List all departments that have employees,
plus those departments that do not have
employees.

SQL>SELECT DEPT.DEPTNO,DNAME,LOC,ENAME,JOB

SQL>FROM DEPT,EMP*

SQL>WHERE DEPT.DEPTNO = EMP.DEPTNO

SQL>/

DEPTNO DNAME LOC ENAME JOB
10 ADMINISTRATION NEW YORK CLARK MANAGER
10 ADMINISTRATION NEW YORK MILLER CLERK
10 ADMINISTRATION NEW YORK OATES PRESIDENT
20 RESEARCH SAN FRANCISCO SMITH CLERK
20 RESEARCH SAN FRANCISCO JONES MANAGER
20 RESEARCH SAN FRANCISCO ADAMS CLERK
20 RESEARCH SAN FRANCISCO SCOTT ANALYST
20 RESEARCH SAN FRANCISCO FORD ANALYST
30 SALES CHICAGO ALLEN SALESMAN
30 SALES CHICAGO WARD SALESMAN
30 SALES CHICAGO BLAKE MANAGER
30 SALES CHICAGO MARTIN SALESMAN
30 SALES CHICAGO TURNER SALESMAN
30 SALES CHICAGO JAMES CLERK
40 OPERATIONS BOSTON

15 records selected.

The asterisk (*) after the EMP table in the FROM clause
indicates that an extra row containing a null value in every
column is to be appended to the EMP table when processing
this query block. This null row of the EMP table is joined
to those DEPT rows that do not have any matching rows in the
EMP table.

Example 2-62: List all departments that do not have any
employees.

SQL>SELECT UNIQUE DEPT.DEPTNO,DNAME,LOC
SQL>FROM DEPT ,EMP*

SQL>WHERE DEPT.DEPTNO = EMP.DEPTNO
SQL> AND EMPNO = NULL

SQL>/

DEPTNO DNAME LOC

40 OPERATIONS BOSTON

The outer-join can be used to join more than two tables,
however, at least one table in the join must not be
outer-joined. The table that is not outer-joined must be
listed first in the FROM clause.

3. DATA MANIPULATION FACILITIES

3.1 INSERT

The INSERT statement specifies the adding of a new row or
set of rows into a table.

Example 3-1: Insert a new employee named Carter with an
employee number of 7989, a job title of
salesman, salary of 1500, and commission of

0, into department 30.

SQL>INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,COMM,DEPTNO):
SQL> <7989,'CARTER','SALESMAN’,1500,0,30>;
sQL>/

1 record created.

All fields do not have to be included in the INSERT
statement.

Example 3-2: Insert a new employee named Wilson, employee
number 7955, in department 20, having all
other fields null.

SQL>INSERT INTO EMP(EMPNO,ENAME,DEPTNO):
SQL> <7955, '"WILSON',20>;

sQL>/

1 record created.

If all fields are present

column names may be omitted.

Example 3-3: Insert a new employee into named Jakes

the EMP table.

SQL>INSERT INTO EMP:

in the right order,

SQL> <7956, 'JAKES','CLERK' ,1000,NULL,20>;

SQL>/

1 record created.

SQL>SELECT *

SQL>FROM EMP
SQL>WHERE DEPTNO = 20;
SQL>/

EMPNO ENAME JOB

COMM DEPTNO

7369 SMITH CLERK
7566 JONES MANAGER
7876 ADAMS CLERK
7788 SCOTT ANALYST
7902 FORD ANALYST
7955 WILSON

7956 JAKES CLERK

7 records selected.

$800.00
$2,975.00
$1,100.00
$3,000.00
$3,000.00

$1,000.00

the list of

into

1-39

40

An INSERT statement may store the result of a query into an
existing table.

Example 3-4: Add to the BONUS table all those employees

whose commission is greater than 25% of their
salary, or those employees who have the job
title of president or manager.

SQL>INSERT IkTO BONUS :

SQL>
SQL>
SQL>
SQL>
SQL>/

SELECT ENAME,JOB,SAL,COMM

FROM EMP
WHERE COMM > 0.25 * SAL
OR JOB IN <'PRESIDENT', 'MANAGER'>;

6 records created.

Example 3-5: List the BONUS table.

SQL>SELECT *

SQL>FROM BONUS;

sSQL>/

ENAME JOB SAL COMM
BLAKE MANAGER $2,850.00

CLARK MANAGER $2,450.00

JONES MANAGER $2,975.00

MARTIN SALESMAN $1,250.00 $1,400.00
OATES PRESIDENT $5,000.00

WARD SALESMAN $1,250.00 $500.00

6 records selected.

3.2 UPDATE

Update is a process of changing the values of fields within

the data base. The rows to be updated are specified by
means of a WHERE clause. The updates to be made are
specified in a SET clause.

Example 3-6: Set employee number 7782's salary to $2,750.
SQL>UPDATE EMP

SQL>SET SAL = 2750

SQL>WHERE EMPNO = 7782;

SQL>/

1 record updated.

SQL>SELECT * FROM EMP WHERE EMPNO=7782;

SQL>/
EMPNO ENAME JOB SAL COMM DE?TNO
7782 CLARK MANAGER $2,750.00 10

A SET clause may update multiple fields within a table.

Example 3-7: Update department 30's location to paris and
increase its employee count by two.

SQL>UPDATE DEPT

SQL>SET LOC = 'PARIS',EMPCNT=NVL(EMPCNT,0) + 2
SQL>WHERE DEPTNO = 30;
SQL>/

1 record updated.

SQL>SELECT *

SQL>FROM DEPT;

SQL>/

DEPTNO DNAME LOC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES PARIS 2

40 OPERATIONS BOSTON

Example 3-8:

Update the employee table by giving a 15%
raise to all employees whose names appear in

the BONUS table.

SQL>UPDATE EMP

SQL>SET SAL = SAL * 1.15

SQL>WHERE ENAME IN

SQL> SELECT ENAME

SQL> FROM BONUS;

SQL>/

6 records updated.

SQL>SELECT * FROM EMP;

sSQL>/

EMPNO ENAME JOB SAL COMM DEPTNO
7369 SMITH CLERK $800.00 20
7499 ALLEN SALESMAN $1,600.00 $300.00 30
7521 WARD SALESMAN $1,437.50 $500.00 30
7566 JONES MANAGER $3,421.25 20
7654 MARTIN SALESMAN $1,437.50 $1,400.00 30
7698 BLAKE MANAGER $3,277.50 30
7782 CLARK MANAGER $3,162.50 10
7788 SCOTT ANALYST $3,000.00 20
7839 OATES PRESIDENT $5,750.00 10
7844 TURNER SALESMAN $1,500.00 $0.00 30
7876 ADAMS CLERK $1,100.00 20
7900 JAMES CLERK $950.00 30
7902 FORD ANALYST $3,000.00 20
7934 MILLER CLERK $1,300.00 10
7955 WILSON 20
7956 JAKES CLERK $1,000.00 20
7989 CARTER SALESMAN $1,500.00 $0.00 30

17 records selected.

3.3 DELETE

DELETE removes rows from tables in the data base.

Example 3-9: Delete the employee named
BONUS table.

SQL>DELETE BONUS

SQL>WHERE ENAME = 'OATES';
SQL>/

1l record deleted.

SQL>SELECT * FROM BONUS;

SQL>/

ENAME JOB SAL COMM
BLAKE MANAGER $2,850.00

CLARK MANAGER $2,450.00

JONES MANAGER $2,975.00

MARTIN SALESMAN $1,250.00 $1,400.00
WARD SALESMAN $1,250.00 $500.00

Oates from

the

The WHERE clause in a DELETE statement may contain a query

block.

Example 3-10: Delete from the BONUS table all the employees

with the same job as Jones.

SQL>DELETE BONUS
SQL>WHERE JOB 1IN

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'JONES';
SQL>/

3 records deleted.

SQL>SELECT * FROM BONUS;

SQL>/
ENAME JOB SAL COMM
MARTIN SALESMAN $1,250.00 $1,400.00

WARD SALESMAN $1,250.00 $500.00

A DELETE statement without a WHERE clause specifies
removal of all rows in the table.

Example 3-11: Delete all rows from the BONUS table.

SQL>DELETE BONUS;
SQL>/
2 records deleted.

SQL>SELECT * FROM BONUS;
SQL>/

ENAME JOB SAL COMM

no records selected

the

4. DATA DEFINITION FACILITIES

This section of the manual describes the CREATE TABLE,
EXPAND TABLE DEFINE VIEW, and DROP facilities of the system.

4.1 CREATE TABLE

Example 4-1: Display projects table.

SQL>SELECT *

SQL>FROM PROJ;

SQL>/

FROM PROJ;

invalid table name [*** ERROR ***]
Example 4-2: Create a new table to contain project number,

name, and budget information.

SQL>CREATE TABLE PROJ

SQL> PROJNO(NUMBER NONULL IMAGE UNIQUE),
SQL> PNAME (CHAR(10) IMAGE),

SQL> BUDGET (NUMBER) ,

SQL> EMPCNT (NUMBER) ;

sQL>/

Table created.

SQL>SELECT *
SQL>FROM PROJ ;
sSQL>/

PROJNO PNAME BUDGET EMPCNT

no records selected

Example 4-3: Insert three projects into the project table.
SQL>INSERT INTO PROJ(PROJNO,PNAME,BUDGET):

SQL> <101, 'ALPHA',250000>;

SQL>/

1 record created.

SQL>INSERT INTO PROJ(PROJNO,PNAME,BUDGET):
SQL> <102,'BETA',175000>;

SQL>/

1 record created.

SQL>INSERT INTO PROJ (PROJNO, PNAME, BUDGET) :
SQL> <103, 'GAMMA' ,95000>;

sSQL>/
1 record created.

SQL>SELECT *

SQL>FROM PROJ ;

SQL>/

PROJIJNO PNAME BUDGET EMPCNT
101 ALPHA $250,000.00
102 BETA $175,000.00
103 GAMMA $95,000.00

4.2 DROP TABLE
Tables and views may be dropped dynamically.

Example 4-4: Drop the BONUS table from the data base.

SQL>DROP TABLE BONUS;
SQL>/
Table dropped.

4.3 EXPAND TABLE

Example 4-5: An existing table may be expanded by adding a
new column to it.

SQL>SELECT EMPNO,DEPTNO,PROJNO,ENAME

SQL>FROM EMP
SQL>WHERE DEPTNO = 10;
sSQL>/

SELECT EMPNO,DEPTNO,PROJNO,ENAME

invalid column name [*** ERROR ***]

Example 4-6: Add a new project number column to the
employee table.

SQL>EXPAND TABLE EMP
SQL> ADD COLUMN PROJNO(NUMBER IMAGE);

SQL>/
Table expanded.

SQL>SELECT EMPNO,ENAME,PROJNO,DEPTNO

SQL>FROM EMP
SQL>WHERE DEPTNO = 10;
SQL>/

EMPNO ENAME PROJNO DEPTNO

7782 CLARK 10
7934 MILLER 10
7839 OATES 10

Example 4-7: Update the employee table by assigning
employees to projects.

SQL>UPDATE EMP

SQL>SET PROJNO = 101

SQL>WHERE DEPTNO = 20

SQL> OR JOB = 'MANAGER';

SQL>/

10 records updated.

SQL>SELECT *

SQL>FROM EMP

SQL>WHERE PROJNO = 101;

SQL>/

EMPNO ENAME JOB SAL COMM DEPTNO PROJNO
7369 SMITH CLERK $800.00 20 101
7566 JONES MANAGER $3,421.25 20 101
7698 BLAKE MANAGER $3,277.50 30 101
7782 CLARK MANAGER $3,162.50 10 101
7876 ADAMS CLERK $1,100.00 20 101
7788 SCOTT ANALYST $3,000.00 20 101
7902 FORD ANALYST $3,000.00 20 101
7955 WILSON 20 101
7956 JAKES CLERK $1,000.00 20 101

9 records selected.

SQL>UPDATE EMP

SQL>SET PROJNO = 102
SQL>WHERE EMPNO > 7700

SQL> AND NOT PROJNO = 101;
SQL>/

5 records updated.

Example 4-8: The PROJ table may now be

table.

SQL>SELECT ENAME,PNAME
SQL>FROM EMP, PROJ
SQL>WHERE EMP.PROJNO
SQL>/

FORD ALPHA
WILSON ALPHA
JAKES ALPHA
TURNER BETA
MILLER BETA
OATES BETA
JAMES BETA
CARTER BETA
ALLEN GAMMA
WAPD GAMMA
MARTIN GAMMA

17 records selected.

= PROJ.PROJNO;

joined to the EMP

4.4 DEFINE VIEW

Alternative views of stored data may be defined. Any vaild
query may be used in the definition of a view.
Example 4-9: Define a view called EMP10 containing

employee number, name, job and project number
information for employees in department 10.

SQL>DEFINE VIEW EMP10 AS

SQL> SELECT EMPNO,ENAME,JOB,PROJNO
SQL> FROM EMP

SQL> WHERE DEPTNO = 10;

SQL>/

View defined.

SQL>SELECT *

SQL>FROM EMP10;

SQL>/

EMPNO ENAME JOB PROJNO
7782 CLARK MANAGER 101
7934 MILLER CLERK 102

7839 OATES PRESIDENT 102

Example 4-10: A view can contain more than one

SQL>DEFINE VIEW PROJSTAFF(EMPLOYEE,PROJECT) AS

SQL>
SQL>
SQL>
sSQL>/

SELECT ENAME,PNAME
FROM EMP, PROJ
WHERE EMP.PROJNO = PROJ.PROJNO;

View defined.

SQL>SELECT *

SQL>FROM
SQL>/

EMPLOYEE

WILSON
JAKES
TURNER
MILLER
OATES
JAMES
CARTER
ALLEN
WARD
MARTIN

PROJSTAFF;

PROJECT

17 records selected.

table.

When defining a view, ORACLE may draw the column names from
the underlying tables or the user may rename the columns as

in the example below.

Example 4-11: Define a view containing information from the
project, employee, and department table.

SQL>DEFINE VIEW PROJECTS (PROJECT,EMPLOYEE,EMP#,LOCATION) AS

SQL> SELECT PNAME,ENAME,EMPNO,LOC
SQL> FROM PROJ, EMP,DEPT

SQL> WHERE EMP.DEPTNO = DEPT.DEPTNO
SQL> AND EMP.PROJNO = PROJ.PROJNO;
SQL>/

View defined.

Example 4-12: Views may be selectively queried in the same
way as a table.

SQL>SELECT PROJECT, EMPLOYEE,LOCATION

SQL>FROM PROJECTS
SQL>WHERE LOCATION = 'NEW YORK';
sQL>/

PROJECT EMPLOYEE LOC

ALPHA CLARK NEW YORK
BETA MILLER NEW YORK
BETA OATES NEW YORK
Example 4-13: Views may be joined to tables or other views.

SQL>SELECT ENAME ,JOB ,PNAME

SQL>FROM PROJ,EMP10

SQL>WHERE PROJ .PROJNO=EMP10 .PROJNO
SQL> AND JOB "= 'CLERK'

SQL>/

ENAME JOB PNAME

CLARK MANAGER ALPHA

OATES PRESIDENT BETA

Views may be defined in terms of other views.

Example 4-14: Define a view containing the name of projects
and employees located in Paris.

SQL>DEFINE VIEW PARIS (NAME,PROJ) AS

SQL> SELECT EMPLOYEE,PROJECT
SQL> FROM PROJECTS

SQL> WHERE LOCATION = 'PARIS';
sQL>/

View defined.

SQL>SELECT *
SQL>FROM PARIS;
SQL>/

BLAKE ALPHA
MARTIN GAMMA
TURNER BETA
JAMES BETA
CARTER BETA

7 records selected.

4.5 Virtual-Fields

A view may contain arithmetic expressions or built in
functions. These expressions or functions appear to the
user of the view as "virtual fields." When expressions or
functions are used within a view, column names must be
specified for the view.

Example 4-15: Define a view containing employee name,
salary, annual salary, and department number.

SQL>DEFINE VIEW PAY (NAME,SAL,COMM,ASAL,DEPTNO) AS

SQL> SELECT ENAME,SAL,COMM,SAL * 12,DEPTNO
SQL> FROM EMP;
SQL>/

View defined.

Example 4-16: List salary information for employees in
department 30.

SQL>SELECT *

SQL>FROM PAY

SQL>WHERE DEPTNO = 30

sSQL>/

NAME SAL COMM ASAL DEPTNO

ALLEN $1,600.00 $300.00 $19,200.00 30

WARD $1,437.50 $500.00 $17,250.00 30

BLAKE $3,277.50 $39,330.00 30

MARTIN $1,437.50 $1,400.00 $17,250.00 30

TURNER $1,500.00 $0.00 $18,000.00 30

JAMES $950.00 $11,400.00 30

CARTER $1,500.00 $0.00 $18,000.00 30

7 records selected.

Example 4-17: Define a view ~containing a departments
minimum, average, max imum, and total

compensation.

SQL>DEFINE VIEW DEPT_ SAL (DEPTNO,LOSAL,MEDSAL,HISAL, TOTSAL) AS
SQL> SELECT DEPTNO,MIN (SAL) ,AVG(SAL) ,MAX(SAL) ,SUM(SAL)
SQL> FROM EMP

SQL> GROUP BY DEPTNO;

SQL>/

Vview defined.

List minimum, average, and total salary for

Example 4-18:
each department.

SQL>SELECT DEPTNO,LOSAL,HISAL,TOTSAL

SQL>FROM DEPT_SAL

sQL>/

DEPTNO LOSAL HISAL TOTSAL
10 $1,300.00 $5,750.00 $10,212.50
20 $800.00 $3,421.25 $12,321.25
30 $950.00 $3,277.50 $11,702.50

S. DATA STRUCTURES

Create a data structure that allows one employee to work on
many projects, and one project to have many employees.

Example 5-1: Create a two column table relating employees
to projects.

SQL>CREATE TABLE PE

SQL> EMPNO(NUMBER NONULI. IMAGE),
"SQL> PROJNO (NUMBER NONULL IMAGE);
SQL>/

Table created.

Example 5-2: Move the relationship between employees and
projects from the EMP table to the PE table.

SQL>INSERT INTO PE(EMPNO,PROJNO) :

SQL> SELECT EMPNO,PROJNO
SQL> FROM EMP;
SQL>/

17 records created.

SQL>SELECT *
SQL>FROM PE;
SQL>/

EMPNO PROJNO

7369 101
7499 103
7521 103
7568 101
7654 103
7698 101
7782 101
7788 101
7839 102
7844 102
7876 101
7900 102
7902 101
7934 102
7955 101
7956 101
7989 102

17 records selected.

Example 5-3:

SQL>UPDATE
SQL>SET
SQL>/

17 records u
SQL>SELECT
SQL>FROM
SQL>/

JONES
MARTIN
BLAKE
CLARK
SCOTT
OATES
TURNER
ADAMS
JAMES
FORD
MILLER
WILSON
JAKES
CARTER

Delete the data from the

EMP table.

EMP

PROJNO = NULL;

pdated.

*

EMP;

JOB SAL
CLERK $800.00
SALESMAN $1,600.00
SALESMAN $1,437.50
MANAGER $3,421.25
SALESMAN $1,437.50
MANAGER $3,277.50
MANAGER $3,162.50
ANALYST $3,000.00
PRESIDENT $5,750.00
SALESMAN $1,500.00
CLERK $1,100.00
CLERK $950.00
ANALYST $3,000.00
CLERK $1,300.00
CLERK $1,000.00
SALESMAN $1,500.00
elected.

17 records s

PROJNO column of the

COMM DEPTNO PROJNO

$300.00
$500.00

$1,400.00

$0.00

$0.00

Example 5-4:

SQL>SELECT
SQL>FROM
SQL>WHERE
SQL> AND
SQL>/

MARTIN GAMMA
BLAKE ALPHA
CLARK ALPHA
SCOTT ALPHA
OATES BETA
TURNER BETA
ADAMS ALPHA
JAMES BETA
FORD ALPHA
MILLER BETA
WILSON ALPHA
JAKES ALPHA
CARTER BETA

17 records s

The new structure requires that the EMP table
be joined to the PROJ table via the PE table.

ENAME , PNAME
EMP, PROJ, PE

EMP.EMPNO = PE.EMPNO
PROJ.PROJNO = PE.PROJNO;

elected.

The new data structure with the PE table allows employees to
be assigned to more than one project.

Example 5-5: Assign employee 7989 to projects 101 and 103,
and employee 7956 to project 102.

SQL>INSERT INTO PE:
SQL> <7989,101>;
sSQL>/

1 record created.

SQL>INSERT INTO PE:
SQL> <7989,103>;

sQL>/
1 record created.

SQL>INSERT INTO PE:
SQL> <7956,103>;

sQL>/
1 record created.

Example 5-6: List the projects for employees 7956 and
7989.

SQL>SELECT ENAME, EMP.EMPNO,PNAME,PROJ.PROJNO

SQL>FROM EMP,PROJ,PE
SQL>WHERE [EMP.EMPNO = PE.EMPNO AND PROJ.PROJNO = PE.PROJNO]

SQL> AND EMP.EMPNO = <7956,7989>;
SQL>/

ENAME EMPNO PNAME PROJNO

JAKES 7956 ALPHA 101
.JAKES 7956 GAMMA 103
CARTER 7989 BETA 102
CARTER 7989 ALPHA 101

CARTER 7989 GAMMA 103

6. DATA INDEPENDENCE

The view facility within ORACLE in combination with the
non-procedural nature of the SQL data language allows the
user's programs to be independent to changes in data

structure.

A new PROJSTAFF view can be defined on the new data
structure. The new view will contain the same information
as the old PROJSTAFF view only the definition of the view
will be different. Users of the old PROJSTAFF view will be

insulated from the change.

Example 6-1: Drop the old PROJSTAFF view.
SQL>DROP VIEW PROJSTAFF;
sSQL>/

View dropped.

Example 6-2: Define a new PROJSTAFF view that joins the
EMP table to the PROJ table via the PE table.

SQL>DEFINE VIEW PROJSTAFF(EMPLOYEE,PROJECT) AS
SQL>SELECT ENAME,PNAME

SQL>FROM EMP, PROJ, PE

SQL>WHERE EMP.EMPNO = PE.EMPNO

SQL> AND PROJ.PROJNO = PE.PROJNO;

SQL>/

View defined.

59

Example 6-3:

SQL>SELECT *

Queries that used the old PROJSTAFF view
continue to run without modification once the
new PROJSTAFF view has been defined even
though the structure of the data base has

been altered.

SQL>FROM PROJSTAFF
SQL>WHERE PROJECT = 'GAMMA';
SQL>/

EMPLOYEE PNAME

WARD GAMMA
MARTIN GAMMA
CARTER GAMMA
JAKES GAMMA

7. OPERATIONS ON TREE-STRUCTURED TABLES

The EMP table does not contain all the information necessary
to define the "reporting structure" between the employees 1n
the EMP table. This 1is because the EMP table does not
identify each employee's direct supervisor. In order to
store this reporting structure information, the EMP table

has to be expanded.

Example 7-1: Add a new column called SUPR to the EMP
table.

SQL>EXPAND TABLE EMP

SQL> ADD COLUMN SUPR(NUMBER IMAGE) ;

SQL>/

Table expanded.

Example 7-2: Assign a supervisor to each employee except
‘ OATES.

SQL>UPDATE EMP

SQL>SET SUPR=7839

SQL>WHERE EMPNO=7782

SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7839
SQL>WHERE EMPNO=7566
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7839
SQL>WHERE EMPNO=7698
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7782
SQL>WHERE EMPNO=7934
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7566
SQL>WHERE EMPNO=7788
SQL>/

1l record updated.

Continue assigning supervisors to

SQL>UPDATE EMP

SQL>SET SUPR=7566
SQL>WHERE EMPNO=7902
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7566
SQL>WHERE EMPNO=7955
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7788
SQL>WHERE EMPNO=7876
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7902
SQL>WHERE EMPNO=7369
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7955
SQL>WHERE EMPNO=7956
SQL>/

1 record updated.

employees.

Continue assigning supervisors to

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7499
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7521
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7654
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7844
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7900
SQL>/

1 record updated.

SQL>UPDATE EMP

SQL>SET SUPR=7698
SQL>WHERE EMPNO=7989
SQL>/

1 record updated.

employees.

Example 7-3: List the reporting structure information from
the EMP table including each employees name,
number, department, and his supervisor's
number.

SQL>SELECT ENAME, EMPNO, SUPR,DEPTNO
SQL>FROM EMP
sSQL>/

ENAME EMPNO SUPR DEPTNO

SMITH 7369 7902 20
ALLEN 7499 7698 30
WARD 7521 7698 30
JONES 7566 7839 20
MARTIN 7654 7698 30
BLAKE 7698 7839 30
CLARK 7782 7839 10
SCOTT 7788 7566 20
OATES 7839 10
TURNER 7844 7698 30
ADAMS 7876 7788 20
JAMES 7900 7698 30
FORD 7902 7566 20
MILLER 7934 7782 10
WILSON 7955 7566 20
JAKES 7956 7955 20
CARTER 7989 7698 30

17 records selected.

When considering the reporting structure information
contained in the EMP table, it may be useful to think of the
EMP table as tree-structured or hierarchical as 1in the
diagram below.

OATES
I
- fommm— e — e — e — —— = +
I I |
CLARK | BLAKE
I I i
| | tom - o ———— ot —————— +
| | | I I I | I
MILLER | ALLEN WARD MARTIN TURNER JAMES CARTER
JONES
I
+————— +————— +
I

ADAMS SMITH JAKES

7.1 CONNECT BY

ORACLE provides a unique set of operators that allows the
user to query these "Tree-Structured" tables. Operations on
tree-structured tables include three clauses: START WITH,
CONNECT BY, and INCLUDING. CONNECT BY and START WITH are
required clauses; INCLUDING is an optional clause.

The CONNECT BY clause indicates the two columns within the
table that contain the information necessary to logically
specify the structure of the tree. The START WITH clause
indicates the leaf within the tree (row within the table)
that the query is to start.

Example 7-4: Find all the people who work directly or
indirectly for JONES.

SQL>SELECT UNIQUE ENAME,EMPNO,JOB,DEPTNO,SUPR
SQL>FROM EMP

SQL>START WITH ENAME = 'JONES'
SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
SCOTT 7788 ANALYST 20 7566
FORD 7902 ANALYST 20 7566
WILSON 7955 20 7566
ADAMS 7876 CLERK 20 7788
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

7 records selected.

A query may "walk" the tree in either the UP or DOWN
direction. The user specifies the direction the tree is to
be walked by means of the PRIOR keyword within the CONNECT
BY clause. In this example, if the PRIOR is placed before
EMPNO, the tree |is walked in the down direction. If the
PRIOR is placed before SUPR, the tree is walked in the UP

direction.

Example 7-5: List all the people in the reporting
structure above SMITH.

SQL>SELECT UNIQUE ENAME , EMPNO,JOB,DEPTNO, SUPR
SQL>FROM EMP

SQL>START WITH ENAME = 'SMITH'

SQL>CONNECT BY EMPNO = PRIOR SUPR

SQL>/

ENAME EMPNO JOB DEPTNO SUPR

SMITH 7369 CLERK 20 7902

FORD 7902 ANALYST 20 7566

JONES 7566 MANAGER 20 7839

OATES 7839 PRESIDENT 10

Example 7-6: SELECT UNIQUE must be specified when walking

the tree in the UP direction.

7.2 START WITH

The START WITH clause can reference more than one starting
point within the tree.

Example 7-7: List all the people who work for CLARK or
BLAKE.

SQL>SELECT UNIQUE ENAME, EMPNO,JOB,DEPTNO, SUPR

SQL>FROM EMP
SQL>START WITH ENAME = 'CLARK'
SQL> OR ENAME = 'BLAKE'

SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>ORDER BY DEPTNO

SQL>/

ENAME EMPNO JOB DEPTNO SUPR
CLARK 7782 MANAGER 10 7839
MILLER 7934 CLERK 10 7782
BLAKE 7698 MANAGER 30 7839
ALLEN 7499 SALESMAN 30 7698
WARD 7521 SALESMAN 30 7698
MARTIN 7654 SALESMAN 30 7698
TURNER 7844 SALESMAN 30 7698
JAMES 7900 CLERK 30 7698
CARTER 7989 SALESMAN 30 7698

9 records selected.

Example 7-8: List all the people who work for people who
have the same job as SCOTT.

SQL>SELECT UNIQUE ENAME, EMPNO,JOB,DEPTNO, SUPR

SQL>FROM EMP

SQL>START WITH JOB IN

SQL> SELECT JOB

SQL> FROM EMP

SQL> WHERE ENAME = 'SCOTT';
SQL>CONNECT BY PRIOR EMPNO = SUPR
sQL>/

ENAME EMPNO JOB DEPTNO SUPR
SCOTT 7788 ANALYST 20 7566
FORD 7902 ANALYST 20 7566
ADAMS 7876 CLERK 20 7788

SMITH 7369 CLERK 20 7902

7.3 INCLUDING

As a tree is being walked, a predicate or set of predicates
can be applied to individual leafs of the tree or entire
branches of the tree. The INCLUDING clause is used to
qualify or disqualify leafs of the tree. The WHERE clause
is used to "prune" entire branches of the tree.

Example 7-9: List all the people who work for JONES except

SCOTT.
SQL>SELECT UNIQUE ENAME, EMPNO,JOB,DEPTNO, SUPR
SQL>FROM EMP
SQL>START WITH ENAME = 'JONES'

SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>INCLUDING ENAME “= 'SCOTT'

SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
FORD 7902 ANALYST 20 7566
WILSON 7955 20 7566
ADAMS 7876 CLERK 20 7788
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

6 records selected.

Example 7-10: List all the employees that work for JONES
except SCOTT and the people who work for

SCOTT.

SQL>SELECT UNIQUE ENAME,EMPNO,JOB,DEPTNO,SUPR
SQL>FROM EMP

SQL>WHERE ENAME "= 'SCOTT'
SQL>START WITH ENAME = 'JONES'
SQL>CONNECT BY PRIOR EMPNO = SUPR
SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
FORD 7902 ANALYST 20 7566
WILSON 7955 20 7566
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

Note that ADAMS, who works for SCOTT was eliminated when
SCOTT was pruned using the WHERE clause. ADAMS was not
eliminated when SCOTT was excluded using the INCLUDING

clause.

A query on a tree-structured table can contain both a WHERE
clause and an INCLUDING clause. First, the tree |is
logically formed using the CONNECT BY clause; Second, the
tree is walked in the direction specified by the PRIOR
keyword in the CONNECT BY clause starting with the leaf
specified in the START WITH clause; Third, the WHERE clause
is applied to each leaf of the tree (row of the table) to
prune branches from the tree; Fourth, the INCLUDING clause
is applied to each leaf of the tree to qualify or disqualify

individual rows.

Example 7-11: List all the employees that work for JONES
except SCOTT and the people who work for
SCOTT, and FORD.

SQL>SELECT UNIQUE ENAME, EMPNO,JOB ,DEPTNO,SUPR
SQL>FROM EMP

SQL>WHERE ENAME "= 'SCOTT'

SQL>START WITH ENAME = '*JONES'

SQL>CONNECT BY PRIOR EMPNO = SUPR
SOL>INCLUDING ENAME “= 'FORD'

SQL>/

ENAME EMPNO JOB DEPTNO SUPR
JONES 7566 MANAGER 20 7839
WILSON 7955 20 7566
SMITH 7369 CLERK 20 7902
JAKES 7956 CLERK 20 7955

Queries on tree-structured tables can include joins.

Example 7-12: List all the employees and the location of
their departments that work for JONES except
SCOTT and the people who work for SCOTT, and

FORD.

SQL>SELECT UNIQUE ENAME,LOC, EMPNO,JOB,DEPT.DEPTNO, SUPR
SQL>FROM EMP,DEPT

SQL>WHERE EMP.DEPTNO = DEPT.DEPTNO

SQL>AND ENAME "= 'SCOTT'

SQL>START WITH ENAME = 'JONES'

SOL>CONNECT BY PRIOR EMPNO = SUPR

SQL>INCLUDING ENAME "= 'FORD'

SQL>/

ENAME LOC EMPNO JOB DEPTNO SUPR
JONES SAN FRANCISCO 7566 MANAGER 20 7839
WILSON SAN FRANCISCO 7955 20 7566
SMITH SAN FRANCISCO 7369 CLERK 20 7902

JAKES SAN FRANCISCO 7956 CLERK 20 7955

8. SECURITY FACILITIES

ORACLE supports both secure and nonsecure data bases. If a
data base is defined as secure, that data base's dictionary
contains information about the users of the data base 1in
addition to a description of data stored within the data
base. This allows ORACLE to control access to the data base

on a user by access privilege basis.

An ORACLE data base is created by means of the DBF utility
program. At the time a data base is created, the creating
user specifies whether the data base is to be secure or
nonsecure. If the data base is to be secure, the creating
user specifies a USER-NAME and PASSWORD to DBF. The data
base used in this manual is a secure data base created with
the following DBF command:

DBF C PERSONNEL PERSONNEL.DBS 2048 SCOTT/TIGER

Initially, only the creating user, SCOTT with a PASSWORD of
TIGER is authorized to operate on the PERSONNEL data base.
All the SQL example operations prior to this section of the
manual have been issued by the fully authorized creating

user, SCOTT.

8.1 DEFINE USER

The creator of a secure data base can authorize additional
users of the data base by means of the DEFINE USER command.
A defined user of the data base is authorized to log on to
the data base, create his own tables, define views on his
tables, and define new users of the data base.

ORACLE security facilities prevent unauthorized users from
logging on the secure PERSONNEL data base.

Have user SCOTT log off of the PERSONNEL data base and
attempt to log on as user ADAMS with a password of WOOD.

Example 8-1: Log on to the PERSONNEL data base as user
SCOTT.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

The creator of the PERSONNEL data base, in this case SCOTT,
can authorize additional users to log on to the data base by
means of the DEFINE USER command.

Example 8-2: Define a new user of the PERSONNEL data base
with a USER-NAME of ADAMS and a PASSWORD of
WOOD.

SQL>DEFINE USER ADAMS/WOOD
SQL>/
User defined.

After a user has been defined, that user may log on to the
data base.

Example 8-3: Log on as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

A new user can create his own tables, define views on his
tables, and define new users of the data base.

Example 8-4: Have user ADAMS create a new table and insert
a record into it.

SQL>CREATE TABLE PARTS

SQL> PARTNO(NUMBER IMAGE UNIQUE),
SQL> PART_NAME(CHAR(IO));
sSQL>/

Table created.

SQL>INSERT INTO PARTS:
SQL> <1,'WIDGET'>;
SQL>/

1 record created.

8.2 GRANT PRIVILEGE

The ORACLE security facilities enable users to control
access to their data by other users. It is the
responsibility of the user who creates a table or view to
control access to that table or view. A user may extend
access to his table or view by means of the GRANT command.

Even though user ADAMS can create his own tables he can not
access data via tables and views created by other users
unless specifically authorized.

Example 8-5: Have user ADAMS attempt to 1list the DEPT
table.

SQL>SELECT *
SQL>FROM DEPT
SQL>/

FROM DEPT

invalid table name [*** ERROR
At this point ADAMS is not authorized to access the DEPT
table and is told that the table does not exist.

Example 8-6: Log back on as user SCOTT, the creator of the
EMP and DEPT tables.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-7: Authorize user ADAMS to READ the DEPT table.
SQL>GRANT READ

SQL>ON DEPT

SQL>TO ADAMS

SQL>/

Privileges granted.

Example 8-8: Log on as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

***]

Example 8-9: Have ADAMS list the DEPT table.

SQL>SELECT *

SQL>FROM DEPT

SQL>/

DEPTNO DNAME LOC EMPCNT
10 ADMINISTRATION NEW YORK
20 RESEARCH SAN FRANCISCO
30 SALES PARIS 2
40 OPERATIONS BOSTON

Example 8-10: Have ADAMS list the PARTS table he created.

SQL>SELECT *
SQL>FROM PARTS
SQL>/

PARTNO PART_N

1 WIDGET

Example 8-11: Log on as user SCOTT.
SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-12: Have user SCOTT attempt to list the PARTS

table.
SQL>SELECT *
SQL>FROM PARTS
sSQL>/
FROM PARTS

invalid table name [*** ERROR **%*]

Even though user SCOTT defined user ADAMS to the PERSONNEL
data base, SCOTT is not allowed to see data stored in tables
created by ADAMS unless specifically authorized to do so by
means of a GRANT privilege command.

8.3 PRIVILEGES

The following privileges may be granted: READ, INSERT,
DELETE, UPDATE (by column), and EXPAND. In addition, the
grantor may allow the grantee to GRANT the listed privileges
to other users.

Example 8-13: Log back on as user SCOTT. #COMMENT #DBS
PERSONNEL SCOTT/TIGER #COMMENT *** Give the
following privileges on the EMP table to user
ADAMS: the right to READ, INSERT, and UPDATE
only the JOB, and DEPTNO columns.

SQL>GRANT READ, INSERT,UPDATE (JOB,DEPTNO)

SQL>ON EMP
SQL>TO ADAMS
SQL>/

Privileges granted.

Example 8-14: Log on as ADAMS.

SQL> #DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 8-15: Have ADAMS update the EMP table.

SQL>UPDATE EMP

SQL>SET JOB='ANALYST'
SQL>WHERE ENAME="'WILSON'
SQL>/

1 record updated.

Example 8-16: Have ADAMS attempt to UPDATE both the JOB and
SAL column of the EMP table.

SQL>UPDATE EMP

SQL>SET JOB='ANALYST',SAL=100000
SQL>WHERE ENAME='WILSON'

sQL>/

SET JOB='ANALYST',SAL=100000

security violation
ORACLE security facilities detect a security violation and

indicate the column of the EMP table that ADAMS was not
authorized to UPDATE.

[*** ERROR **%*]

-76

The phrase ALL RIGHTS may be substituted for the privilege
list in the GRANT statement.

Example 8-17: Have ADAMS grant SCOTT all privileges on the
PARTS table.

SQL>GRANT ALL RIGHTS

SQL>ON PARTS
SQL>TO SCOTT
sQL>/

Privileges granted.

The phrase ALL BUT can be specified preceding a privilege
list.

Example 8-18: Log on as user SCOTT.

SQL> #DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-19: Give ADAMS all the privileges on the DEPT

table except EXPAND, along with the right to
GRANT these privileges to other users.

SQL>GRANT ALL BUT EXPAND

SQL>ON DEPT
SQL>TO ADAMS
SQL>WITH GRANT OPTION
SQL>/

Privileges granted.
Privileges can be granted to all users by specifying PUBLIC
in place of the user list.

Example 8-20: Give all |users READ privileges on the
PROJSTAFF view.

SQL>GRANT READ

SQL>ON PROJSTAFF
SQL>TO PUBLIC
sQL>/

Privileges granted.

Note that the only privilege that may be granted on a view
is the READ privilege.

8.4 USER Keyword

ORACLE requires users to enter their name and password in
order to log on to a secure data base. ORACLE maintains the
name of the current user as a keyword constant called USER.
The keyword USER may be specified in a SQL statement
anywhere a constant is allowed. USER will always return the
name of the currently logged on user.

The USER keyword can be specified in the WHERE clause of a
SQL statement to control access to the data base. This 1is
especially useful when defining views on the data base.
#WORKSIZE 8

Example 8-21: Define a view of the EMP table allowing any
employee to see his own department number,
name, salary, commission, and job but not any
information about any other employee.

SQL>DEFINE VIEW MYSELF AS

SQL> SELECT *

SQL> FROM EMP

SQL> WHERE ENAME = USER;
SQL>/

View defined.

Example 8-22: Give all users access to the MYSELF view.

SQL>GRANT READ

SQL>ON MYSELF
SQL>TO PUBLIC
sSQL>/

Privileges granted.

The USER keyword will always return the USER-NAME of the
user currently logged on to the data base.

Example 8-23: Have user SCOTT query the MYSELF view.

SQL>SELECT *

SQL>FROM MYSELF

sSQL>/

EMPNO ENAME JOB SAL COMM DEPTNO PROJNO SUPR
7788 SCOTT ANALYST $3,000.00 20 7566

Example 8-24: Log on as user ADAMS and query the MYSELF
view.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.
SQL>SELECT *

SQL>FROM MYSELF
SQL>/
EMPNO ENAME JOB SAL COMM DEPTNO PROJNO SUPR

e e e e s e mm e e - ———— - ————— -_———— . ———— — S esm e ssEmm——— ——— o - — > ———— - —— -

7876 ADAMS CLERK $1,100.00 20 7788

Example 8-25: Define a view giving managers access to
employees in their department only if the
manager earns the same amount or more that

the employee.

SQL>DEFINE VIEW MY EMPS (NAME ,JOB,SAL,COMM,DEPTNO) AS
SQL>SELECT WORKER.ENAME, WORKER.JOB ,WORKER.SAL,WORKER.COMM,
SQL>SELECT WORKER.DEPTNO

SQL>FROM EMP WORKER,EMP MGR

SQL>WHERE WORKER.DEPTNO = MGR.DEPTNO

SQL> AND [MGR.JOB = 'MANAGER' AND MGR.SAL >= WORKER.SAL])
SQL> AND MGR.ENAME=USER;

SQL>/

SELECT WORKER.DEPTNO

missing 'from' keyword [*** ERROR ***]

Example 8-26: Define JONES and CLARK as users of the
PERSONNEL data base.

SQL>DEFINE USER JONES/WOOD
sSQL>/
User defined.

SQL>DEFINE USER CLARK/CLOTH
SQL>/
User defined.

Example 8-27: Grant all users access to the MY_EMPS view.
Note that the view will only return data if
the user's JOB = MANAGER.

SQL>GRANT READ

SQL>ON MY EMPS
SQL>TO PUBLIC
sQL>/

TO PUBLIC

security violation [*** ERROR **%*]

Example 8-28: Have user ADAMS,who is not a manager attempt
to query the MY EMPS view.

SQL>SELECT *

SQL>FROM MY EMPS
sQL>/
FROM MY EMPS

invalid table name [*** ERROR ***]

Example 8-29: Have users JONES and CLARK, who are managers,
gquery the MY EMPS view.

SQL> #DBS PERSONNEL JONES/WOOD
Database 'PERSONNEL' opened.
SQL>SELECT *

SQL>FROM MY EMPS
SQL>/
FROM MY EMPS

invalid table name [*** ERROR ***]

Example 8-30: The view only allows the manager to see
people in their own department.

SQL>#DBS PERSONNEL CLARK/CLOTH
Database 'PERSONNEL' opened.
SQL>SELECT *

SQL>FROM MY EMPS

sQL>/ -

FROM MY_EMPS

invalid table name [*** ERROR ***]
Note that CLARK was not able to see employee OATES because

the view prevents managers from seeing anyone in their
department who earns more than they do.

8.5 REVOKE Privilege

Once a privilege has been granted it may be withdrawn by
means of the REVOKE command. Privileges are revoked from
the named grantee and from all users to whom he has granted
them.

Example 8-31: Log on the PERSONNEL data base as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 8-32: Have ADAMS INSERT a new department into the
DEPT table.

SQL>INSERT INTO DEPT:
SQL> <50, 'SERVICE','DETROIT',NULL>

SQL>/
1 record created.

Example 8-33: Log on the PERSONNEL data base as user SCOTT.

SQL> #DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 8-34: Revoke from ADAMS the right to INSERT into
the DEPT table.

SQL>REVOKE INSERT

SQL>ON DEPT
SQL>FROM ADAMS
SQL>/

Privileges revoked.

Example 8-35: Log on the PERSONNEL data base as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 8-36: Have ADAMS attempt to INSERT a new department
into the DEPT table.

SQL>INSERT INTO DEPT:

SQL> <60, 'DEVELOPMENT', 'PORTLAND' ,NULL>
SQL>/

INSERT INTO PEPT:

invalid table name [*** ERROR **%*]

9. DATA DICTIONARY STRUCTURE

This section of the manual contains a description of
ORACLE's integrated data dictionary.

The ORACLE data dictionary is made up of several system
defined tables and views. These dictionary tables are
dynamically wupdated Dby ORACLE to ~contain a <current
description of all user tables, views, and access
privileges. In addition, the ORACLE dictionary is self
describing. Therefore, a user may query the dictionary to
determine the names of the tables that make up the

dictionary.

DTAB contains the names and a description of the dictionary
tables. DCOL contains the names of the columns of the

dictionary tables.

Example 9-1: List the names and a description of the
tables in the dictionary.

SQL>SELECT *

SQL>FROM DTAB

sQL>/

TABLE COMMENT

COL COLUMN NAMES OF USERS TABLES AND VIEWS
COLDEF DEFINITION OF COLUMNS IN USERS TABLES
DCOL COLUMN NAMES OF DICTIONARY TABLES
DTAB COMMENTS ON DICTIONARY TABLES

DTABLES DESCRIPTION OF DICTIONARY TABLES
EXPDEF COLUMN DEFINITIONS USED BY EXPORT
GRANTS ACCESS PRIVILEGES GRANTED BY USER
PRIVS ACCESS PRIVILEGES HELD BY USER

TAB NAMES OF USERS TABLES AND VIEWS

USERS NAME OF USERS YOU DEFINED

VIEWS DEFINITIONS OF VIEWS

VXREF CROSS-REFERENCE OF VIEWS OF TABLES

12 records selected.

Example 9-2:

SQL>SELECT
SQL>FROM
SQL>/

coL
COLDEF
COLDEF
COLDEF
COLDEF
COLDEF
COLDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
EXPDEF
VIEWS
VIEWS
VXREF
VXREF
USERS
USERS
DTAB
DTAB
DTABLES
DTABLES
DTABLES
DTABLES
DCOL
DCOL
GRANTS
GRANTS
GRANTS
GRANTS
PRIVS
PRIVS
PRIVS
PRIVS

41 records

List the names
dictionary tables.

*
DCOL

COLUMN

TYPE
CREATOR
GRANTEE
TABLE
COLUMN
TABLE
COLUMN
DATATYPE
LENGTH
IMAGE
NONULL
TABLE
COLID
COLUMN
DATATYPE
LENGTH
IMAGE
NONULL
VIEW
TEXT
VIEW
TABLE
USER
OWNER
TABLE
COMMENT
TABLE
TYPE
CREATOR
GRANTEE
TABLE
COLUMN
TABLE
COLUMN
GRANTEE
ACCESS
TABLE
COLUMN
GRANTOR
ACCESS

selected.

of

the

columns

of

the

1-83

The dictionary table TAB allows a user to list the names of
all the tables and views that that user has access
privileges on. TAB also indicates if the table is a view,
the name of the user who created the table (or view), and
the grantee of the privileges.

Example 9-3: List user ADAM's tables.
SQL>SELECT *

SQL>FROM TAB

SQL>/

TABLE TYPE CREATOR GRANTEE
PARTS TABLE ADAMS ADAMS

DEPT TABLE SCOTT ADAMS

EMP TABLE SCOTT ADAMS
PROJSTAFF VIEW SCOTT PUBLIC
MYSELF VIEW SCOTT PUBLIC
Example 9-4: Log on as user SCOTT.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 9-5: List user SCOTT's table.

SQL>SELECT *

SQL>FROM TAB
SQL>/

TABLE TYPE CREATOR GRANTEE
EMP TABLE SCOTT SCOTT
DEPT TABLE SCOTT SCOTT
PROJ TABLE SCOTT SCOTT
EMP10 VIEW SCOTT SCOTT
PROJECTS VIEW SCOTT SCOTT
PARIS VIEW SCOTT SCOTT
PAY VIEW SCOTT SCOTT
DEPT SAL VIEW SCOTT SCOTT
PE TABLE SCOTT SCOTT
PROJSTAFF VIEW SCOTT SCOTT
PARTS TABLE ADAMS SCOTT
MYSELF VIEW SCOTT SCOTT
PROJSTAFF VIEW SCOTT PUBLIC
MYSELF VIEW SCOTT PUBLIC

14 records selected.

Example 9-6: The dictionary table COL contains the names
of the columns of user defined tables.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

86

Example 9-7: List the names of the

tables.
SQL>SELECT *
SQL>FROM CcoL
SQL>/
TABLE COLUMN
PARTS PARTNO
PARTS PART_ NAME
DEPT DEPTNO
DEPT DNAME
DEPT LOC
DEPT EMPCNT
EMP EMPNO
EMP ENAME
EMP JOB
EMP SAL
EMP COMM
EMP DEPTNO
EMP PROJNO
EMP SUPR
PROJSTAFF EMPLOYEE
PROJSTAFF PROJECT
MYSELF EMPNO
MYSELF ENAME
MYSELF JOB
MYSELF SAL
MYSELF COMM
MYSELF DEPTNO
MYSELF PROJNO
MYSELF SUPR

24 records selected.

Example 9-8: Log on as user SCOTT.

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

columns of user ADAMS'

The dictionary table COLDEF contains the definition of
columns in user tables.

Example 9-9: List the definition of the columns in the EMP
table.

SQL>SELECT COLUMN,DATATYPE, LENGTH, IMAGE,NONULL

SQL>FROM COLDEF

SQL>WHERE TABLE = 'EMP'

SQL>/

COLUMN DATATYPE LENGTH IMAGE NON

EMPNO NUMBER 22 UNIQUE YES

ENAME CHAR 10 NON-UNIQUE NO

JOB CHAR 9 NON-UNIQUE NO

SAL NUMBER 22 NO

COMM NUMBER 22 NO

DEPTNO NUMBER 22 NON-UNIQUE NO

PROJNO NUMBER 22 NON-UNIQUE NO

SUPR NUMBER 22 NON-UNIQUE NO

8 records selected.

VIEWS is the dictionary table that contains the SQL text of
the DEFINE VIEW statement. Comments that were entered as a
part of the SQL view definition are also stored in VIEWS.
Example 9-10: List the definition of the PROJECTS view.

SQL>SELECT *

SQL>FROM VIEWS

SQL>WHERE VIEW = 'PROJECTS';
SQL>/

VIEW TEXT

PROJECTS DEFINE VIEW PROJECTS (PROJECT,EMPLOYEE,EMP#,LOC
PROJECTS ATION) AS

PROJECTS SELECT PNAME,ENAME,EMPNO,LOC
PROJECTS FROM PROJ ,EMP,DEPT

PROJECTS WHERE EMP.DEPTNO = DEPT.DEPTNO
PROJECTS AND EMP.PROJNO = PROJ.PROJNO;

6 records selected.

88

The VXREF dictionary table defines the relationship of user
views to underlying tables and views. The first column
contains the name of the view. The second column contains
the name of the underlying table or view.

Example 9-11: List a cross reference of views and their
base tables.

SQL>SELECT *

SQL>FROM VXREF
SQL>/

VIEW TABLE
EMP10 EMP
PROJECTS EMP

PAY EMP

DEPT SAL EMP
PROJSTAFF EMP
MYSELF EMP
PROJECTS DEPT
PROJECTS PROJ
PROJSTAFF PROJ
PARIS PROJECTS
PROJSTAFF PE

11 records selected.

The ORACLE dictionary allows users to obtain information
about only those tables that the user has access privilges
on. The user may also determine: the names of users he has
directly or indirectly defined, the access privileges he
holds, and the access privileges he has directly or
indirectly granted.

The USERS table contains the names of all those users that
were defined by the user who is currently logged on to the
system. The first column in the USERS table contains the
name of the defined user. The second column of the USERS

table contains the name of the creating user.

Example 9-12: List the names of the users that originated
with SCOTT.

SQL>SELECT *
SQL>FROM USERS
SQL>/

ADAMS SCOTT
JONES ADAMS
CLARK ADAMS

User ADAMS was defined directly by user SCOTT, but users
JONES and CLARK were defined by ADAMS and thereby indirectly

by SCOTT.
Example 9-13: Log on as user ADAMS.

SQL>#DBS PERSONNEL ADAMS/WOOD
Database 'PERSONNEL' opened.

Example 9-14: List the users that originated with ADAMS.

SQL>SELECT *
SQL>FROM USERS
SQL>/

USER OWNER

JONES ADAMS
CLARK ADAMS

The PRIVS table contains access privileges held by users of
the data base. Each user can only see the privileges he
holds. The PRIVS table contains: the name of the table the
privileges are on, the name of the column the privileges
apply to, the name user who granted the privileges, and the
privilege mask described below. A PRIVS table entry will
only contain a column name if update privileges have been
granted on a column column rather than a table basis.

Example 9-15: List all the privileges held by ADAMS.

SQL>SELECT *
SQL>FROM PRIVS
sSQL>/

EMP JOB
EMP DEPTNO

COL
COLDEF
EXPDEF
VIEWS
VXREF
USERS
DTAB
DTABLES
DCOL
GRANTS
PRIVS
PROJSTAFF
MYSELF

19 records selected.

GRANTOR

SCOTT

ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
ORACLE
SCOTT

SCOTT

ACCESS

RGIGDGUGEGMGLGCG
RGXXDGUGXXMGLGCG
RXIXXXXXXXXXXXXX
XXXXXXUXXXXXXXXX
XXXXXXUXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX
RXXXXXXXXXXXXXXX

Note that ADAMS has all privileges on MY_EMPS and PARTS, the
table and view he created. He has all but INSERT and EXPAND
on the DEPT table. He has READ and INSERT without the GRANT
option, and UPDATE on the JOB and DEPTNO columns of the EMP
table. The diagram below describes the entries 1in the
ACCESS column of both the PRIVS and GRANTS dictionary
tables.

PRIVILEGE MASK

R ¢ I 6 D G U G E G M G L G C G

| ! | I I | | | not used
| | | | I | | o
| | | | | | | not used

| | | | I I tom
| | | | | | not used

| | | I ! e
| | |] | EXPAND

I I | I o e
| | | | UPDATE

| | I e et
I | | DELETE

| | e
| | INSERT

[ettt et
| READ

o o ————— e ———————— e ——— e —— —— ——

The G following each privilege flag indicates that the GRANT
OPTION is present for that privilege. If an X is present
for any privilege or grant flag, that privilege was not
granted.

The GRANTS table indicates the privileges granted either
directly or indirectly by the current user. The GRANTS
table contains: the name of the table the privileges are on,
the name of the column the privileges apply to, the name of
the user who is the grantee of the privileges, and the
privilege mask. A GRANTS table entry will only contain a
column name if update privileges have been granted on a
column rather than a table basis.

Example 9-16: List all the privileges granted by ADAMS.

SQL>SELECT *

SQL>FROM GRANTS

SQL>/

TABLE COLUMN GRANTEE ACCESS

PARTS ADAMS RGIGDGUGEGMGLGCG

PARTS SCOTT RXIXDXUXEXMXLXCX

9.1 Dictionary Extensions

The user is free to expand the ORACLE data dictionary by
creating additional tables, and defining views of the user
tables joined to the system defined dictionary tables and
views.

Example 9-17: Create a dictionary extension to contain
comments on user defined tables.

SQL>CREATE TABLE TAB COM

SQL> TABLE (CHAR(20) IMAGE UNIQUE),
SQL> COMMENT (CHAR (35))
SQL>/

Table created.

Example 9-18: Enter a comment on the EMP table into the
TAB_COM table.

SQL>INSERT INTO TAB_COM:
SQL> <'EMP','Information about company employees'>

SQL>/
1 record created.

Example 9-19: Define a view joining TAB from the dictionary
to the TAB_COM table.

SQL>DEFINE VIEW TABC AS

SQL> SELECT TAB.TABLE,TYPE,CREATOR,COMMENT
SQL> FROM TAB,TAB_COM

SQL> WHERE TAB.TABLE=TAB COM.TABLE;

SQL>/ -

View defined.
SQL>#WORKSIZE 12

Example 9-20: List the characteristics of the EMP table.

SQL>SELECT *

SQL>FROM TABC
SQL>WHERE TABLE = 'EMP'
SQL>/

EMP
TABLE SCOTT Information about company employees

10. Concurrency Control Facilities

ORACLE allows multiple user to concurrently UPDATE the same
table in a data base. Yet, ORACLE does not require a user
to issue locking statements or statements of intent to
update. The setting and clearing of locks are the

responsibility of ORACLE.

No explicit 1lock requests are required to insure that
concurrent UPDATE operations do not read the same row of a
table and attempt to write back that row. ORACLE
automatically ©places locks on individual records to
synchronize UPDATE operations preventing the updates from
overwriting each other.

A user may not wish to operate on data that has been
modified by an operation that is still 1in progress. To
accomplish this serialization the user can place his SQL
request between BEGIN TRANSACTION and END TRANSACTION

statements.

In addition, placing several SQL statements inside a
transaction causes ORACLE to execute these SQL statements as
an "atomic act" without permitting interference (UPDATES to
the same tables) by other users during the transaction.

ORACLE's automatic update synchronization locks a record
(row of a table) at a time. USER requested transactions

lock a table at a time.

Example 10-1: Log on as user SCOTT

SQL>#DBS PERSONNEL SCOTT/TIGER
Database 'PERSONNEL' opened.

Example 10-2: Begin a transaction to calculate the average
salaries of each job group within the EMP
table.

SQL>BEGIN TRANSACTION
SQL>ON TABLE EMP READ
sQL>/

Transaction begun.

SQL>SELECT JOB,AVG(SAL)

SQL>FROM EMP
SQL>GROUP BY JOB
SQL>/

JOB AVG (SAL)
ANALYST $3,000.00
CLERK $1,030.00
MANAGER $3,287.08
PRESIDENT $5,750.00
SALESMAN $1,495.00

SQL>END TRANSACTION
SQL>/
Transaction ended.

In the above READ TRANSACTION, all UPDATE activity on the
EMP table was suspended for the life of the transaction.
All READ activity on the EMP table was allowed to continue
concurrently.

Execute an UPDATE TRANSACTION that gives all
employees with the job of ANALYST a 10%

raise.

Example 10-3:

SQL>BEGIN TRANSACTION
SQL>ON TABLE EMP UPDATE

SQL>/
Transaction begun.

SQL>UPDATE EMP

SQL>SET SAL = SAL * 1.10
SQL>WHERE JOB = 'ANALYST'
SQL>/

3 records updated.

SQL>END TRANSACTION

SQL>/
Transaction ended.

In the above UPDATE TRANSACTION, all UPDATE activity on the
EMP table was suspended for the life of the transaction. 1In
addition, all READ transactions on the EMP table also waited
for the UPDATE transaction to complete. READ activity on
the EMP table that was not a part of a TRANSACTION was

allowed to continue concurrently.

Placing several SQL statements inside a transaction causes

ORACLE to execute these SQL statements as a "atomic act"
without permitting interference (UPDATES to the same tables)

by other users during the transaction.

Example 10-4: SELECT the count of employees in department
20 from the EMP table, and UPDATE the DEPT

table with the result.

SQL>BEGIN TRANSACTION

SQL>ON TABLE EMP READ, DEPT UPDATE
sQL>/

Transaction begun.

SQL>SELECT COUNT(¥*)

SQL>FROM EMP
SQL>WHERE DEPTNO = 20
SQL>/
COUNT (*)

7
SQL>UPDATE DEPT
SQL>SET EMPCNT = 7
SQL>WHERE DEPTNO = 20
SQL>/

1 record updated.

SQL>END TRANSACTION
SQL>/
Transaction ended.

If the above transaction had been done from within a program
it could have used from one to three cursors: one for the
BEGIN TRANSACTION, one for the query on the EMP table, and
one for the UPDATE of the DEPT table.

TRANSACTIONS may be nested. 1f they are nested, they must
be numbered.

Example 10-5: SELECT the count of employees

in department

20 from the EMP table and UPDATE the DEPT
table with the result as a nested transaction
rather than a single transaction.

SQL>BEGIN TRANSACTION 1
SQL>ON TABLE EMP READ

SQL>/
Transaction begun.

SQL>SELECT COUNT(¥*)
SQL>FROM EMP
SQL>WHERE DEPTNO = 20
sSQL>/

COUNT (*)

SQL>BEGIN TRANSACTION 2
SQL>ON TABLE DEPT UPDATE
SQL>/

Transaction begun.

SQL>UPDATE DEPT

SQL>SET EMPCNT = 7
SQL>WHERE DEPTNO = 20
SQL>/

1 record updated.

SQL>END TRANSACTION 2

SQL>/
Transaction ended.

SQL>END TRANSACTION 1
SQL>/
Transaction ended.

In doing the above operation as a nested transaction rather
than a single transaction, the DEPT table was not locked
during the query on the EMP table. This allowed update
activity to continue on the DEPT table while the EMP table
was being queried. This could be significant depending on
the length of time it takes the query to execute. However,
the nesting of transactions creates the possibility that
TRANSACTION 2 will have to wait for access to the DEPT table
which may be locked by another ongoing transaction. The
nesting of transactions creates the possibility of deadlock.
Doing the entire operation as one transaction has no
potential for deadlock because once a transaction has begun,
it has acquired all the data resources required for

completion.

It is important to remember that the above query/update
operation could have been done three different ways: 1)
without placing them within a transaction; 2) as a single
transaction; 3) as a nested transaction. It is up to the
user to decide what level of serialization of operations he
requires for a particular application.

The following chart indicates what operations on a table
wait, and what operations continue when a READ, READ
TRANSACTION, UPDATE OR UPDATE TRANSACTION is active on that

table.

CONCURRENCY CONTROL TABLE

omm———————— o tmm———————— +

| READ | READ | UPDATE | UPDATE |

| | TRANS ! | TRANS |
Fo—————— e ————————— e e ———— o ————— |
| READ | ALLOWED | ALLOWED | ALLOWED | ALLOWED |
| I I l |
| ——————— o ———— o ———————— Fommm——————— Fmm———————— |
| READ | ALLOWED | ALLOWED | SUSPENDED | SUSPENDED|
| TRANS | | I
[=== $om - Fomm Fommm Fm———————— I
| UPDATE | ALLOWED | SUSPENDED | ALLOWED | SUSPENDED]|
I | I ! I |
|————m o dom Fomm Fomm———— |
| UPDATE | ALLOWED | SUSPENDED | SUSPENDED | SUSPENDED]|
| TRANS | | | | I

