ORACLE

SQL LANGUAGE

REFERENCE GUIDE

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

LANGUAGE REFERENCE MANUAL

TABLE OF CONTENTS
INTRODUCTION
FORMAT NOTATION
SQL STATEMENTS
QUERY STATEMENTS
BUILT-IN FUNCTIONS
NULL FUNCTION
DATA MANIPULATION STATEMENTS
DATA DEFINITION STATEMENTS
DATA CONTROL STATEMENTS
SECURITY CONTROL STATEMENTS
CONCURRENCY CONTROL STATEMENTS
SQL PUNCTUATION & CODING RULES
LOGICAL EXPRESSIONS

SQL BNF SYNTAX

2-13
2-26
2-32

2-39

SQOL LANGUAGE — REFERENCE GUIDE

INTRODUCTION

SQOL is a relational data language that provides a unified set
of facilities for query, data manipulation, data definition,
and data control. SQL is both a terminal interface for
nonspecialists in data processing, and a data sublanguage
embedded in host programming language for use by application
programmers.

SQL was developed by IBM as the main external interface to be
supported by System R, IBM's experimental relational database
management system. In 1976, a complete BNF syntax for SQL
was published in the "IBM Journal of Research and
Development." In 1977, RSI began the development of ORACLE

incorporating the SQL language.

ORACLE is based on the relational model of data. SQL is a
non-procedural language that operates on normalized data.
The advantages of the relational model with a non-procedural
language are ease of use, maximum data independence, and
flexibility. SQL is an easy to learn English-like language
that enhances user productivity. it is a high-level
non-procedural language offering greater data independence
than conventional procedural database languages. SQL allows
complete flexibility in the formulation of statements
relating data in the database.

SQL

FORMAT NOTATION

This manual uses the following notation to describe the
syntax of SQL statements.

CAPITALIZED WORDS identify words that have specific
meanings in SQL.

lower-case words identify words that are names or
labels to be specified by the user.

{ 1 Square Brackets are used to indicate that the
enclosed word is optional and may be

omitted.

| | Vertical Bars enclosing vertically stacked items
indicate that one of the enclosed

items may be chosen.

. . . Ellipsis indicates that the immediately
preceding unit may occur once, Or
any number of times in succession.

SQL Query Statements consist of one or more Query Blocks.

QUERY STATEMENTS

A

Query Block starts with and must include a SELECT clause and

a FROM clause.
returned as a

The SELECT clause specifies what
result of the query block.

is to be
The FROM clause

specifies what tables and/or views are involved in the query.

A Query Block
follows:
WHERE
GROUP BY
HAVING

CONNECT BY
START WITH

INCLUDING

may

optionally contain other clauses as

to specify selection criteria for the
rows.

for use with built-in functions.

for specifying election criteria on

groups.

for tree-structured access.
for tree-structured access.

for specifying selection criteria for
leafs for tree-structured access.

The values resulting from processing a Query Block can be

referred to in the WHERE clause of another Query Block. This
is accomplished by nesting Query Blocks within a Query
Statement.
SELECT ENAME,JOB
FROM EMP
WHERE JOB =
SELECT JOB
FROM EMP
WHERE ENAME = 'JONES';
Query Blocks can be nested to any level within a Query

Statement,

using boolean AND,
of the SQL statements,
nested Query Block.

and may be

combined with other SQL predicates
and NOT. 1In the syntax specifications

OR,
"SELECT . . ." is used to denote a

The SELECT Clause

"SELECT [UNIQUE] |* | ,lcolumn ly o o &
|]column | |table.column]
table.column		table.*
table.*	lexpression	
lexpression		function
function	JUSER	

The SELECT clause specifies the columns to be returned as the
result of a query. The SELECT clause may request: all
columns; a 1list of specific columns; the results of
arithmetic expressions or built-in functions; or any
combination of columns, expressions, and functions. ORACLE
will return all rows that satisfy the WHERE clause of the
query block. Duplicate rows are not eliminated unless SELECT
UNIQUE 1is specified. UNIQUE is an option rather than a
default because the process of elimination of duplicate

values requires extra processing.

UNIQUE indicates that duplicate rows which
satisfy the WHERE clause are to be
eliminated from the query result.

* returns all columns from all of the
table(s) and view(s) specified in
the FROM clause of the query block.

column specifies the name of a. ycelumn
contained in a table” or view
specified in the FROM clause of the
query block.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

table.* returns all the columns in the table
or view specified. The * can be
qualified with a table name when
there are multiple tables and/or
views listed in the FROM clause.

expression specifies an arithmetic expression

function

USER

made up of columns and constants

that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function
parameter is used.

indicates any of the SQL built-in
group functions COUNT, SUM, AVG,
MAX, MIN. The presence of a
built-in function within a SELECT
clause implies a GROUP BY. If the
GROUP BY is not explicitly stated,
the entire query result is treated
as one group and each field in the
SELECT clause must be a unique
property of the group. See the
GROUP BY clause and
Built-in-Functions sections for a
more detailed description.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

FROM

The FROM Clause

|table s o o =
| table label]|
|table* |

The FROM clause lists the tables and views that are referred

to by the other clauses
must contain a SELECT

in the query block. A query block
and FROM clause, and may optionally

contain a WHERE, GROUP BY, and HAVING clause.

table

table label

table¥*

specifies the name of a table or
view that contains columns
referenced by SELECT, WHERE, GROUP
BY, HAVING, or ORDER BY clauses.

specifies that the table or view is
to be renamed within the context of
a query block. The renaming of a
table with a label is necessary when
the same table or view is 1listed
more than once in the same FROM
clause. This mechanism is used to
join a table to itself. The
temporary label is used in place of
the table name to qualify columns
referenced by the other clauses
within the query block.

specifies that the rows of the table
listed in the from clause are to
participate in the Jjoin if the
join-column contains a null value.
This is referred to as a
"Outer-Join". An outer Jjoin table
can not be the first table listed in
the FROM clause.

WHERE

The WHERE Clause

[NOT] | column | |= | lcolumn | |AND| .
jtable.column| | °= | |table.column | |OR |
| constant | | > | lconstant |
INULL | | >= | lgeneric-constant|
expression		<		NULL
<column, ...>		<=		lexpression
USER]	BETWEEN			<column, ...>
IN		<expression,...>		
SELECT. ..				
USER I				

The WHERE clause qualifies the rows that are to be returned
as the result of a query. The WHERE clause may contain any
combination of predicates that compare fields of rows to
constant values, compare two fields of a row with each other,
compare fields to expressions, etc. Multiple predicates
within the same WHERE clause can be combined to form logical
expressions connected by AND and OR with square brackets []
used to establish precedence. NOT may be specified prior to
any predicate to negate a predicate or a boolean expression.
The absence of a WHERE clause indicates that all rows in the
table or view specified in the FROM clause, are to be

returned.

NOT specifies that the following
predicate or boolean expression 1is
to be negated.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the

SELECT clause.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

constant

generic-constant

NULL

expression

specifies any numeric or
character-string constant literal
value. single quotation marks are
required around all character-string
constants to distinguish them from
column names.

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation v.,.." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value in
the database. Null values are
ignored in the evaluation of all
arithmetic expressions, and the
computation of all built-in
functions except COUNT. NULL values
are treated as unknowns in the
evaluation of 1logical expressions.
The evaluation of logical
expressions is described in a
separate section of this manual
which contains the truth tables for
three valued logic.

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, =, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function
parameter is used.

<column,...>

<expression,...>

SELECT. ..

USER

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions. The predicate in
the WHERE clause tests the field for
inclusion in the set. example: WHERE
DNO IN <5+4+2,17,11%*3>

specifies the use of the result of
one query in the WHERE clause of

another query. The inner Qquery
returns a set of values to the WHERE
clause of the outer query. The

outer query proceeds as though it
were given a set of constants in

place of the inner query. Query
blocks may be nested to any number

of levels.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the less than comparison
operator.

indicates the less than or equal
comparison operator.

BETWEEN

IN

AND

OR

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or
columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in

place of 1IN without changing the
meaning of the WHERE clause.

indicates the boolean operator AND.
The boolian operators are used to
connect predicates to form compound
logical expressions within the WHERE
clause.

indicates the boolean operator OR.

Built-In Functions

| COUNT | | * |
jSUM | | column |
| AVG | | table.column]
| MAX]
|MIN |

ORACLE provides five built-in functions as a standard part of
the system. These functions may be used in the SELECT clause
and the HAVING clause. When a built-in function is used in a
SELECT clause, and there is no GROUP BY clause in the query
block, the entire table is treated as one group. Only unique
attributes of the group may be selected. No Built-in
function other than COUNT may be applied to columns defined
as CHAR in the CREATE TABLE. With the exception of the COUNT
function, null values will not be included in a built-in
function unless the NULL Function parameter is used.

COUNT specifies the count of the set of
all fields or rows qualified by the
WHERE clause. COUNT includes null
fields in its total.

SUM specifies the arithmetic sum of the
values of qualifying fields.

AVG specifies the arithmetic average of
the values contained in the set of

qualifying fields.

MAX specifies the maximum numeric value
contained in the set of qualifying
fields.

MIN specifies the minimum numeric value
contained in the set of qualifying
fields.

* specifies the count of all rows that

satisfy the WHERE clause. The * may
only by used with the COUNT function
in the form: COUNT(*).

column

table.column

specifies the name of a column

defined in a table or view specified
in the FROM clause of the query

block.

specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

NVL

Null value Function

(column,value)

The ORACLE Null Value Function is used to assign a temporary
value to null value encountered within an expression. The
Null VvValue Function may be used in a SELECT, SET or WHERE
clause anywhere a column name may be used including within
arithmetic expressions and built-in-functions.

specifies the name of a column

column
within a SELECT, SET or WHERE
clause. The column must have been
defined as NUMBER within the CREATE
TABLE.

value specifies a temporary numeric value

to be assigned to null wvalues
encountered during processing.

The GROUP BY Clause

GROUP BY |column |, « «
| table.column]|

The GROUP BY clause is used to partition tables or views into
groups according to the values in a column or a 1list of
columns. A built-in set function is then applied to each
group. A GROUP BY clause is always used together with a
built-in function. When a GROUP BY clause 1is wused, or
implied by the presence of a built-in function in the SELECT
clause, each field in the SELECT clause must be a unique

property of the group.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the
SELECT clause.

table.column specifies the name of a column
qualified by the name of the table

that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

HAVING

The HAVING Clause

|column

| column
|table.column

|table.column

l | | |

| | I |

|constant | | > | |]constant |
INULL | | >= | lgeneric-constant|
lexpression	R I INULL			
<column, ...>		<=	lexpression	
USER		BETWEEN		<column,...>
] IN | | cexpression,...>|

| SELECT. .. |

|USER I

The HAVING clause qualifies groups that are to be returned as
the result of a query. Each field listed in the HAVING
clause must be a unique property of the group. The HAVING
clause may contain any combination of predicates to accept
certain groups and disqualify others. The predicates can use
a built-in function to compare the aggregate property of the
group to a constant value or to another aggregate property of
the same group. When a query block has both a WHERE clause
and a HAVING clause: first the WHERE clause is applied to
qualify rows; then the groups are formed; then the HAVING
clause is applied to qualify groups. Multiple predicates
within the same HAVING clause form logical expressions
connected by AND and OR with square brackets [] used to
establish precedence. The absence of a HAVING clause

indicates that all groups formed are to be returned.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the
SELECT clause.

table.column specifies the name of a column
gqualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

constant

generic-constant

NULL

expression

<column,...>

<expression,...>

specifies any numeric or
character-string constant 1literal
value. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation ", .." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value in
the database. Null values are
ignored 1in the evaluation of all
arithmetic expressions, and the
computation of all built-in
functions except COUNT. NULL values
are treated as unknowns in the
evaluation of 1logical expressions
(see Three Values Logic).

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, =, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function

parameter is used.

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions. The predicate in
the HAVING clause tests the field
for inclusion in the set.

SELECT...

USER

BETWEEN

IN

AND

OR

specifies the use of the result of
one query in the HAVING clause of
another query. The inner query
returns a set of wvalues to the
HAVING clause of the outer query.
The outer query proceeds as though
it were given a set of constants in
place of the 1inner Qquery. Query
blocks may be nested to any number
of levels.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the less than comparison
operator.

indicates the 1less than or equal
comparison operator.

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or
columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in

place of IN without changing the
meaning of the WHERE clause.

indicates the boolean operator AND.

indicates the boolean operator OR.

The CONNECT BY Clause

CONNECT BY [PRIOR] major-column = [PRIOR] minor-column

In ORACLE, a table may be used to represent tree-structured
data. Consider a parts table consisting of assemblies
(major) and components (minor). There is one row in the
table for each combination of a component and assembly. One
assembly can be a component of another assembly, etc. The
table contains one column identifying component-number and
another column identifying assembly-number. This table then
represents a complete bill of materials.

The CONNECT BY clause specifies the selection of rows
according to their tree-structure relationship. The clause
requires specification of the major and minor columns. The
PRIOR keyword is positioned before the major column to
indicate that the rows are to be selected going up the tree,
or before the minor column to indicate the rows are to be
selected going down the tree.

PRIOR specifies the direction in which
rows are to be selected. If the
PRIOR keyword is placed before the
minor (component) column, the query
proceeds down the tree (explosion).
If the PRIOR is placed before the
major (assembly) column, the query
proceeds up the tree (implosion).

major-column specifies the name of the assembly
column.
minor-column specifies the name of the component

column.

START WITH [NOT] |column

The START WITH Clause

I | = | Jcolumn I |AND| .
|table.column]| | ~= | |table.column | |OR |
|]constant | | > | |constant |
INULL | | >= | |lgeneric-constant|
|expression | | < | |NULL |
| <column, ...>| | <= | |]expression |
| USER | | BETWEEN | <column,...> l

[IN | | <expression,...>|
| SELECT... |
|USER |

The START WITH clause specifies the rows that are to be used
as starting points in queries on tree-structured tables. The
START WITH clause may contain any predicate or logical
expressions that may be contained within a WHERE clause. The
START WITH clause 1is always used in conjunction with the

CONNECT BY clause.

NOT specifies that the following
predicate or boolean expression is
to be negated.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query

block.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

constant specifies any numeric or
character-string constant literal
value. Single quotation marks are
required around all character-string
constants to distinguish them from

column names.

generic-constant

NULL

expression

<column, ...>

<expression,...>

SELECT...

USER

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation "..." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value in
the database.

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function
parameter is used.

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions.

specifies that the result of a query
block is to be used in the START
WITH clause.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

BETWEEN

IN

AND

OR

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the less than comparison
operator.

indicates the 1less than or equal
comparison operator.

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or
columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in

place of IN.

indicates the boolean operator AND.
The boolian operators are used to
connect predicates to form compound
logical expressions.

indicates the boolean operator OR.

The INCLUDING Clause

INCLUDING [NOT] |column | | = | |column | |AND| .
|table.column] | °= | |table.column] |OR |
|constant | | >] |constant |
INULL | |>= | |generic-constant|
lexpression | | < | INULL |
|<column,...>| | <= | jexpression |
|USER | | BETWEEN | | <column, ...>]

| IN | | <expression,...>|
| SELECT... I
| USER |

The INCLUDING clause is used with queries on tree-structured
tables. The INCLUDING clause is used in conjunction with the
WHERE clause to determine which rows are to be returned as a
result of the query. Any rows which are excluded by virtue
of not satisfying the WHERE clause, result in exclusion of
entire "branches" of the tree structure. Any rows which are
excluded by virtue of not satisfying the INCLUDING clause,
result only in that row being excluded. 1In other words, the
WHERE clause causes exclusion before the CONNECT BY is
applied; the INCLUDING clause causes exclusion after the
CONNECT BY is applied.

The INCLUDING clause may contain any predicates or logical
expressions that may be contained within the WHERE clause.
INCLUDING is an optional clause used in conjunction with the
CONNECT BY clause.

NOT specifies that the following
predicate or boolean expression is
to be negated.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block.

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiquity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

constant specifies any numeric or

generic-constant

NULL

expression

<column, ...>

<expression,...>

SELECT...

character-string constant literal
value. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

specifies the leading
character-string of a literal value.
The leading string must be followed
by the ellipsis notation "_.." and
the result must be enclosed in
single quotation marks.
Specification of a generic constant
allows for a search on a leading
character-string of a value.

indicates the absence of a value in
the database.

specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function
parameter is used.

specifies a set of numeric or
character-string literal values.
The set is enclosed in
angle-brackets < > and items within
the set are separated by commas.

specifies a set of constant values
or expressions.

specifies that the result of a query
block is to be used in the INCLUDING
clause.

USER

BETWEEN

IN

AND

OR

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

indicates the equal comparison
operator.

indicates the not equal comparison
operator.

indicates the greater than
comparison operator.

indicates the greater than or equal
comparison operator.

indicates the 1less than comparison
operator.

indicates the 1less than or equal
comparison operator.

indicates the range comparison
operator. The range is specified as
a pair of constants, expressions, or
columns connected by an AND.

indicates the set inclusion
operator. IN tests a field for
inclusion in a set of values. The
comparison operator = may be used in
place of IN.

indicates the boolean operator AND.
The boolian operators are used to
connect predicates to form compound
logical expressions.

indicates the boolean operator OR.

The ORDER BY Clause

ORDER BY |column | jaAsCc |, . . .
| table.column] | DESC/|

|expression |

The ORDER BY clause indicates the sequence that the query
result is to be returned. The ORDER BY clause may contain a
major and up to 254 minor sorting fields, with a maximum
concatenated sort field of 255 characters. Each sort field
may specify ascending or descending order. An ORDER BY
clause is not part of a query block, and may only be
associated with the first query block of a SQL query
statement.

column specifies the name of a column
defined in a table or view specified
in the FROM clause of the query
block. Note that columns specified
here, need not be specified in the

SELECT clause.

%

table.column specifies the name of a column
qualified by the name of the table
that contains the column. Qualified
column names are used to eliminate
ambiguity when the FROM clause lists
multiple tables or views that
contain duplicate column names.

expression specifies an arithmetic expression
made up of columns and constants
that are connected by the operators
+, -, *, /. Parenthesis () are
used to establish precedence. Note
that expressions involving a column
value of NULL, will result in a null
value unless the NULL Function
parameter is used.

ASC indicates ascending sort order. If
no sort direction is specified for a
field, ascending is assumed.

DESC indicates descending sort order.

DATA MANIPULATION STATEMENTS

The INSERT INTO and DELETE clauses provide for addition and
deletion of rows of a table. The combination of the UPDATE
and SET clauses allows modification of column values within a
row or set of rows within a table.

Nested Query Blocks may be used with the INSERT INTO clause
to copy data from another table. A WHERE clause is used with
the DELETE and UPDATE clauses to specify sets of records to
be processed.

Refer to the section on Concurrency Control Statements for
information about locking during the execution of data
manipulation statements.

The following SQL clauses are provided for Data Manipulation:

INSERT INTO for adding rows to a table.
DELETE for deleting rows from a table.
UPDATE for specifying a table whose rows are

to be updated.

SET for specifying the updates to be made
to columns of a row.

The

INSERT INTO table(column,...):

INSERT INTO Clause

| <constant,...>
INULL

| USER

| SELECT . . .

The INSERT statement specifies the adding of a new row or set

of rows into a table.
insertion statement are

Fields that are not present in the
given null values. 1f the row to be

inserted has all its fields present in the correct order, the
list of column names may be omitted.

table

(column, ...)

constant

NULL

USER

specifies the name of the table into
which the rows are to be inserted.

specifies the names of the columns
of the table in the order the values
will appear in the INSERT statement.
If values are being provided for all
columns of a row (with any missing
values being indicated by the
keyword NULL), and the columns are
in the order that they are defined
in the CREATE TABLE, then the column
list may be omitted.

specifies any numeric or
character-string constant literal
value that 1is to be inserted into
the database in the specified
column. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

indicates that the column associated
with the NULL is to be null in the

database.

returns the name of the user (as
specified in the DEFINE USER
command) who is executing this SQL
statement.

SELECT...

specifies that the result of a query
is to be inserted into a table 1in
the database. Query blocks
specified within an INSERT statement
can be nested to any number of

levels.

DELETE

The DELETE Clause

table

The DELETE clause specifies the name of the table containing
a row or set of rows that are to be removed from the
database. The specific rows that are to be deleted are
qualified by a WHERE clause. The WHERE clause in a DELETE
statement is identical to the WHERE clause in a query and may

contain nested query blocks.

table specifies the name of the table that
contains the rows to be removed from

the database.

UPDATE

The UPDATE Clause

table

The UPDATE clause specifies the name of the table containing
a row or set of rows that are to be modified. A SET clause
is used to specify the updates which are to be performed on
the one or more columns within a row. The specific row or
rows to be modified are qualified by means of a WHERE clause.
The WHERE clause in a UPDATE statement is identical to the
WHERE clause in a query and may contain nested query blocks.
Primary keys may not be modified by an UPDATE statement (see

CREATE TABLE).

table specifies the name of a table that
is to be modified.

R

SET

The SET Clause

column = |constant |, . . .
|expression|

The SET clause specifies a column or list of columns to be
modified within the table referenced by the UPDATE clause. A
SET clause is always used in conjunction with an UPDATE
clause. New values for fields that are to be updated may be

stated as constants or expressions.

constant specifies any numeric or
character-string constant literal
value as the new value for the
field. Single quotation marks are
required around all character-string
constants to distinguish them from
column names.

expression specifies the use of the result of
an arithmetic expression as the new
value for the field. An arithmetic
expression can be made up of columns
and constants that are connected by
the operators +, -, *, /.
Parenthesis () are used to
establish precedence.

DATA DEFINITION STATEMENTS

The SQL Data Definition Statements provide for establishing
and modifying data definitions within the ORACLE Data
Dictionary. The execution of these statements does not

require any reorganization activity.

The following statements are provided:

CREATE TABLE for defining a new TABLE 1in the
database.

EXPAND TABLE for defining a new COLUMN for an
existing TABLE.

DEFINE VIEW for defining a new VIEW.

DROP for removing a TABLE or VIEW

definition.

N
|

The CREATE TABLE Statement

CREATE TABLE table

column(|CHAR(len) [VAR]| [NONULL] [UNIQUE] (UC] [IMAGE]), . . .

|NUMBER |

The CREATE TABLE statement defines a new table that
physically stored in the database.

is to be
A table may contain from

1 to 255 columns. The CREATE TABLE specifies the name of the
table, the names of the columns, and the column data types.
The presence of null or duplicate values within a column may
be restricted. High-performance access paths may be
specified on any columns.

ORACLE automatically maintains an index (IMAGE) for the first
column defined in the table. To optimize sequential

processing the rows of

sequence based on this

the table are stored in physical
index. This column is automatically

treated as a required (NONULL) item.

table

column

CHAR

len

specifies the name of the table that
is being defined. The name must be
unique within the database. The
maximum length of the table name is
30 characters. The first character
must be alphabetic.

specifies the name of a column
defined within the table. Column
names must be unique within a table.
The column name can have a maximum
length of 30 characters. The first
character must be alphabetic.

indicates the column is to contain
alpha-numeric character string
values.

specifies the maximum length of a
value to be stored in a character
string field. The length must be a
number from 1 to 255.

33

VAR

NUMBER

NONULL

UNIQUE

uc

IMAGE

indicates that the value stored in a
character string field 1is to Dbe
stored in variable 1length format.
Currently, ORACLE stores all
character string values in variable
length format whether or not VAR is
specified.

indicates the column is to contain
numeric values. Numeric values are
stored internally in base 256 format
to maintain maximum precision.

indicates that null values are not
permitted in the column.

indicates that no two fields within
this column can have the same value.
UNIQUE can only be specified if
IMAGE is also specified.

indicates that the 1index to Dbe
maintained on this column is to have
forward compression only. If UC is
not specified, the index will have
both forward and backward
compression.

indicates that an index 1is to be
maintained for the wvalues in the
column. Join operations can Dbe
performed only if both columns
referenced in the joining predicate
are defined as IMAGE.

The EXPAND TABLE Statement

EXPAND TABLE table

ADD COLUMN column(]CHAR(len) [VAR]|[NONULL]|[UNIQUE] [UC] [IMAGE]|)
|NUMBER |

The EXPAND TABLE statement adds a new column to an existing
table stored in the database. The new column is added to the
right side of the table. Existing rows are considered to
have null values in the new column until they are updated.
Queries and views that were written in terms of the existing
table are not affected by the expansion. EXPAND TABLE
specifies the name of the table to be enlarged and defines
the new column with a syntax identical to that used in the
CREATE TABLE statement. The presence of null or duplicate
values within the column may be restricted. A
high-performance access path (IMAGE) may be specified.
EXPAND TABLE is a instantaneous operation. No physical
reorganization of any part of the database takes place.

table specifies the name of the table that
is being expanded.

column specifies the name of a column being
added to the table. Column names
must be unique within a table. The
column name can have a maximum
length of 30 characters. The first
character must be alphabetic.

CHAR indicates the column is to contain
alpha-numeric character string
values.

len specifies the maximum 1length of a

value to be stored in a character
string field. The length must be a
number from 1 to 255.

VAR

NUMBER

NONULL

UNIQUE

ucC

IMAGE

indicates that the value stored in a
character string field 1is to be
stored in variable 1length format.
Currently, ORACLE stores all
character string values in variable
length format whether or not VAR is
specified.

indicates the column is to contain
numeric wvalues. Numeric values are
stored internally in base 256 format
to maintain maximum precision.

indicates that null values are not
permitted in the column.

indicates that no two fields within
this column can have the same value.
UNIQUE can only be specified if
IMAGE is also specified.

indicates that the index to Dbe
maintained on this column is to have
forward compression only. If UC 1is
not specified, the index will have
both forward and backward
compression.

indicates that an index 1is to be
maintained for the wvalues in the
column. Join operations can be
performed only if both columns
referenced in the joining predicate
are defined as IMAGE.

The DEFINE VIEW Statement

DEFINE VIEW view [(column, . . .)] AS SELECT . . .

The DEFINE VIEW statement creates an alternative view of data
stored in tables in the database. The definition of a view
is similar to the process of stating a query, because the
result of any query on one or more tables is itself a table.
Therefore, any query formulation can be wused in the
definition of a view. The DEFINE VIEW statement names the
view and optionally names its columns. A view may be defined
in terms of other views. Views may be queried in the same
way as stored tables; however, DELETE, UPDATE, and INSERT
clauses may "not" reference views.

view specifies the name of the view that
is being defined. Table and view
names must be unique within the
database. The maximum length of the
view name 1is 30 characters. The
first character must be alphabetic.

column specifies the name of a column
defined within the view. Column
names must be unique within a view.
The column name can have a maximum
length of 30 characters. The first
character must be alphabetic. A
view's column names may be drawn
from the SELECT clause of the query
defining the view if the column
names in the SELECT clause are
unique.

SELECT... specifies the use of the result of a
query as a view on the database.
Any valid query block can be used as
a database view. The query blocks
may be nested to any number of
levels.

DROP

The DROP Statement

| TABLE | name
|VIEW |

The DROP statement removes tables or views from the system.
Once a system entity has been dropped, its name may be
reused. A table cannot be dropped if the table contains
data. A table or view cannot be dropped if another view is

defined upon it.

TABLE indicates the system entity to be
dropped is a table. A table may not
be dropped until all rows in that
table have been deleted.

VIEW indicates the system entity to be
dropped is a view.

name specifies the name of the table or
view to be dropped.

DATA CONTROL STATEMENTS

The SQL Data Control Statements provide for Security and
Concurrency Control.

The following SQL statements are provided for Security
Control:

DEFINE USER to define a user of a database and
his password.

GRANT to give privileges on a TABLE or VIEW
to a user.

REVOKE to remove privileges on a TABLE or
VIEW from a user.

PASSWORD to allow a user to change his
password.

The following SQL statements are provided for Concurrency
Control:

BEGIN Lock a resource.

TRANSACTION

END TRANSACTION Unlock a resource.

The DEFINE USER Statement

DEFINE USER user-name/password

The DEFINE USER statement adds an authorized user to a secure
ORACLE database. Only defined users are permitted to log on
to a secure database.

Initially, the user who creates the database is the only
authorized user of that database. Thereafter, the creating
user can define additional users via the DEFINE USER command.
These new users may themselves define additional users, etc.

Users defined by means of the DEFINE USER command are
authorized to log on to a secure database and create tables.
These users are not allowed any access to any data stored
within the data base without data access privileges. Data
access privileges are given to a user via the GRANT command.

user-name specifies the name or identifier of
the user being defined. The user
must enter this name when logging on
to an ORACLE database. The
user-name can have a maximum length
of 20 characters.

password specifies the name of the password
for the user being defined. The
user must enter this password when
logging on to an ORACLE database.
The password can have a maximum
length of 20 characters.

The GRANT Statement

GRANT|privilege[,...] |ON table TO|user-name([,...]|
|ALL RIGHTS | |PUBLIC |
|ALL BUT privilege([,...]]|

[WITH GRANT OPTION]

It is the responsibility of the user who creates a table or
view to control access to it. When a user creates a table,
only that creating user 1is privileged to access that table.
The creating user may allow other users access privileges on
his table via the GRANT command.

The following privileges may be granted:

READ

INSERT

DELETE

UPDATE (by column)
EXPAND

Oonly the READ privilege may be specified for a view.

Users that have been granted the right to exercise a
privilege may or may not have the right to grant the same
privilege to other wusers. The grantor of privileges may
permit the grantee to grant the 1listed privileges to other
users by including the clause WITH GRANT OPTION.

privilege specifies the type of operations
that are to be authorized for the
table.

ALL RIGHTS indicates that all privileges are to

be granted.

ALL BUT indicates that all privileges except
those listed in the GRANT command

are to be granted.

table specifies the name of the table or
view for which the privileges apply.
If a view is specified, only the
READ privilege may be granted.

user—-name specifies the name of the user or
users that are to receive the
privileges. User-name is the

user-name field specified 1in the
DEFINE USER command.

PUBLIC indicates that all users of the
database are to receive the

privileges listed.

WITH GRANT OPTION specifies that the grantee may grant
the privileges listed to other

users.

REVOKE |privilege[,...]
|ALL RIGHTS
|ALL BUT privilege[,...]

Privileges that have been granted by means

The REVOKE Statement

| ON table FROM |user-name[,...]]|
| | PUBLIC |
|

of the GRANT

command may be withdrawn through the use of the REVOKE

command.

The named privileges are removed from the grantee

and from all users to whom he has granted them.

The following privileges may be revoked:

READ
INSERT
DELETE

UPDATE (by column)

EXPAND

Only the READ privilege may be specified for a view.

privilege

ALL RIGHTS

ALL BUT

table

specifies the type of operation that
is no 1longer authorized for the
table.

indicates that all privileges are to
be revoked.

indicates that all privileges except
those listed in the REVOKE command
are to be withdrawn.

specifies the name of the table or
view for which the privileges are to
be revoked. If a view is specified,
only the READ privilege may be
revoked.

user-name

PUBLIC

specifies the name of the user or
users whose privileges are to be
revoked. User name is the user-name
field specified in the DEFINE USER
command.

indicates that all wusers of the
database are to have the 1listed

privileges revoked.

The PASSWORD Statement

PASSWORD password

The PASSWORD statement is used to redefine a user's password.
It can only be used by a user to redefine his own password.

specifies the name of the new
password for the currently logged on
user. A password can have a maximum
length of 20 characters.

password

CONCURRENCY CONTROL STATEMENTS

ORACLE allows multiple users to concurrently UPDATE the same
table in a database. Yet, ORACLE does not require a user to
issue locking statements or statements of intent to update.
The setting and clearing of locks are the responsibility of
ORACLE. No explicit lock requests are required to insure
that concurrent UPDATE operations do not read the same row of
a table and attempt to write back that row. ORACLE
automatically places locks on individual records (rows) in
order to synchronize UPDATE operations, thus preventing the
updates from overwriting each other.

A user may not wish to operate on data that has been modified
by an operation that is still in progress. To accomplish
this serialization the user can place his SQL request between
BEGIN TRANSACTION and END TRANSACTION statements. In
addition, placing several SQL statements inside a transaction
causes ORACLE to execute these SQL statements as a "atomic
act" without permitting interference (UPDATES to the same
tables) by other users during the transaction.

ORACLE's automatic update synchronization locks a record (row
of a table) at a time. USER requested transactions lock a

table at a time.

Whereas transaction level control will often be desired in
UPDATE operations, it is also useful in READ-only situations
when it is required that data being retrieved not be subject
to modification during the period of retrieval.

The BEGIN TRANSACTION Statement

BEGIN TRANSACTION [tran-id] ON TABLE table | UPDATE |, . . .

| READ |

The BEGIN TRANSACTION statement is used to identify the start
of a logical transaction consisting of one or more SQL
statements. The BEGIN TRANSACTION must specify those tables
(if any) being locked for UPDATE purposes, and those tables

(if any) being locked for READ purposes.

Transactions may be nested. When transactions are nested,
the BEGIN TRANSACTION statements must be numbered beginning
with 1.

tran-id specifies an integer value. Tran-id
must be specified when transactions
are nested.

table specifies the name of a table which
will be updated or read.

UPDATE specifies that the table should be
locked for all other update and read
transactions.

READ specifies that the table should be
locked to update transactions. Read
transactions may concurrently access
the table.

The END TRANSACTION Statement

END TRANSACTION ([tran-id]

The END TRANSACTION statement is wused to terminate a
transaction that was started with a BEGIN TRANSACTION

statement.

tran-id specifies an integer value. Tran-id
must be specified when transactions
are numbered in the BEGIN

TRANSACTION statement.

S QL

PUNCTUATION AND CODING RULES

The following general rules of punctuation apply in writing
SQL statements:

Blank Spaces are used as general purpose
delimiters. The number of blank
spaces used is optional and will not
change the meaning of a SQL
statement.

, Comma is used to separate items in a list.

. Period is used to separate qualifiers in a
qualified name.

; Semicolon is used to indicate the end of a
query block. The semicolon may be
omitted in query statements

containing only one query block.

: Colon is used as a general purpose
terminator within a SQL statement.

[1 Sguare Brackets are used to establish precedence

within logical expressions in WHERE

and HAVING clauses.

< > Angle Brackets are used to enclose sets of literal
values.

() Parentheses are used to establish precedence
within arithmetic expressions.

Parentheses are also used for
general purpose enclosure Wwithin

SQL.

LOGICAL EXPRESSIONS

SQL WHERE and HAVING clauses contain logical expressions.
Logical expressions are made up of predicates connected by
the boolean operators AND and OR. ORACLE tests fields in a
given row in the database to determine if the row satisfies
the predicates in the logical expression.

ORACLE allows unknown or null values in the database.
Therefore, the evaluation of logical expressions requires the
use of three valued logic.

Rows that contain null fields tested by the WHERE clause are
assigned an unknown truth value (?). The truth value of a
row against the entire logical expression is then evaluated
using the three valued logic truth tables depicted below.

AND | T F 2 OR] T F ? NOT |

T | T F ? T| T T T T | F
F | F F F F| T F 2 F | T
2 12 F 2 21T 2?2 2 2 1 2

only those rows whose overall truth value 1is true are
considered to have satisfied the WHERE clause. If the row's
overall truth value is false or unknown the row is
disqualified by the WHERE clause.

Null values are ignored in the evaluation of arithmetic
expressions.

S QL

BNF Syntax

sql-statement :: = query

| dml-statement

| ddl-statement

| control-statement
= insertion

I

deletion

dml-statement ::

| update

query :: = query-block [ORDER BY ord-spec-list]
insertion :: = INSERT INTO receiver : insert-spec
receiver :: = table-name [(field-name-list)]
field-name-list :: = field-name

| field-name-list , field name
insert-spec :: = query-block

| lit-tuple

deletion : = DELETE table-name [where-clause]
update :: UPDATE table-name [where-clause]
SET set-clause-list [where-clause]

where-clause :: = WHERE boolean
set-clause-list :: = set-clause
| set-clause-list , set-clause
set-clause :: = field-name = expr
query-block :: = select-clause

FROM from-list

[WHERE boolean]}

[GROUP BY field-spec-list]

{ HAVING boolean]

[CONNECT BY [PRIOR] field-spec = field-spec]
[START WITH boolean]

[INCLUDING boolean]

SELECT [UNIQUE] set-expr-list
SELECT [UNIQUE] *

sel-expr

sel-expr-list , sel-expr

select-clause ::

sel-expr-list ::

sel-expr :: = expr
| var-name . *
| table-name . *
= table-name [var-name]}
| from-list , table-name [var-name]
field-spec-1list :: = field-spec
| field-spec-list , field-spec
= field-spec [direction]
| expr
| ord-spec-list , field-spec [direction]

from-list ::

ord-spec-list ::

direction :: = ASC
| DESC

boolean :: = boolean-term
| boolean OR boolean-term
boolean-term :: = boolean-factor

boolean-factor :

boolean-term AND boolean factor
= [NOT] boolean primary

boolean-primary :: = predicate

predicate

table-spec

expr ::

| [boolean]
:: = expr comparison expr
| expr BETWEEN expr AND expr
| expr comparison table-specC
| < field-spec-list> = table spec
| < field-spec-list > [IS] 1IN table-spec
:: = query-block
I literal

= arith-term

arith-term

arith-facto

primary

field-spec

comparison

comp-op

add-op
mult-op

set-fn

expr add-op arith-term

:: = arith-factor
| arith-term mult-op arith-factor
: = [add-op] primary

r :
= field-spec
| set-fn (expr)
| COUNT (*)
| NVL (field-spec , constant)
| constant
] (expr)
:: = field-name
| table-name . field-name
| var-name . field-name
:: = comp-op
| [IS] IN
| "=
I >
| >=
| <
| <=
= +
| -
= %
|/
= AVG
| MAX
| MIN
| SUM
]

literal :: = < lit-tuple-list >
| lit-tuple
| constant
lit-tuple-list :: = lit-tuple
| lit-tuple-list , lit-tuple

lit-tuple :: = < entry-list >
entry-list :: = entry
| entry-list , entry

entry :: = [constant]
constant :: = quoted-string

| number

| NULL
table-name = name

image-name :: = name
name :: = identifier
field-name :: = identifier
var-name :: = identifier
integer :: = number
ddl-statement :: = create-table

| expand-table

| define-view

| drop
create-table :: = CREATE TABLE table-name (field-defn-list)
field-defn-1list :: = field-defn

| field-defn-list , field-defn
field-defn :: = field-name (type [, type-mod])
type :: = CHAR (integer) [VAR]
| NUMBER
type-mod :: = NONULL
| IMAGE [image-mod]
image-mod :: = UNIQUE
| UucC
:: = EXPAND TABLE table-name ADD COLUMN field-defn
: = DEFINE VIEW table-name
[(field-name-1list)] AS query

expand-table
define-view :

drop :: = system-entity name
system-entity :: = TABLE
| VIEW
control-statement :: = define-user
| password-spec
| revoke

| begin-trans

| end-trans
define-user :: = DEFINE USER user-defn
user-defn :: = user-name/password
password-spec :: = PASSWORD password

grant :: = GRANT [auth] table-name TO user-list
[WITH GRANT OPTION]

= ALL RIGHTS ON

| operation-list ON

| ALL BUT operation-list ON
user-list :: = user-name
| user-list , user-name
| PUBLIC
t = operation

| operation-list , operation
= READ
| INSERT
| DELETE
| UPDATE [(field-name-list)]
| EXPAND
revoke :: = REVOKE [auth] table-name FROM user-1list
begin trans :: = BEGIN TRANSACTION [tran-number]
ON TABLE table-name trans-type

: = (integer)
= UPDATE
| READ
end trans :: = END TRANSACTION [tran-number]

auth ::

operation-1lis

operation ::

tran-number
trans-type :

