ORACLE

INTERACTIVE APPLICATION FACILITY

USER'S GUIDE

Oracle Users Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

INTERACTIVE APPLICATION

FACILITY

TERMINAL OPERATOR USER'S GUIDE

TABLE OF CONTENTS

Chapter 1 - Introduction
Chapter 2 - Executing an IAF Application

Chapter 3 - Executing the Sample Application

**tbs - means "to be supplied”

INTRODUCTION

1.0 Manual Objectives and Use

This manual describes the operation of an IAF application.
It is intended mainly for persons who will be writing IAF
applications. Persons reading this should be familiar with
SQL. It instructs the terminal operator on the procedures
for executing and controlling the application processing.

After reading this manual the user should be able to execute
the desired application, cause data to be added, retrieved,
updated, and deleted from the database, and control the order
or flow of the processing.

EXECUTING AN IAF APPLICATTION

2.1 IAP Execution

An IAF application 1is executed interactively from the
nperator's terminal. A CRT or video type terminal |is
required. IAF is distributed with support for the DEC VT52,
VT100, and Perkin Elmer OWL. Terminals compatible with this
list may also be used. Other terminal types can be used, but
their characteristics must be defined to IAF using the
procedure outlined in Appendix A.

IAF applications are specified to, and generated by, the
Interactive Application Generator (IAG) utility described in
the IAF Application Design Guide. Following the generation
process, an application is immediately available for

execution.

To execute an application the wuser must invoke the
Interactive Application Processor (IAP) by entering the
following command from the terminal:

IAP <applname> [<terminal type>]

<applname> is the name of the application
specified to the IAG at

generation time.

<terminal type> Specify the terminal type
identifier. For the IAF
supplied types the identifiers
are: "vT1l00", "yTs2", "OwWL".
This parameter is optional, and
if omitted the installation
defined default type will be
used. See Appendix A for more
information on terminal types.

If the application database is secured the following message
will prompt the operator to supply a valid userid and

password:
SECURE DATABASE: ENTER NAME AND PASSWORD

NAME: scott
PASSWORD : XXXXX

The entered password will be displayed as x's on the screen.
If valid, application processing will continue.

In addition to database access, the operator must have been
granted privileges to read and modify the database tables
referenced within the application. Access privileges to
specific tables and columns are verified during application
execution, and violations reported at that time.

2.2 Definition of Terms

This section will define some terms which will be used in
describing the operations of an IAF application. It is
assumed that the reader understands basic computer concepts
and the operation of the terminal device. An understanding
of the ORACLE Data Base Management System, and the SQL data
language is essential.

>

APPLICATION IAF applications allow an operator to maintain
his database interactively from a video terminal. In
addition to storing and retrieving data, the application
helps the operator by checking the input, and indicating when
an error has been made. Requiring the operator to enter
correct input prevents invalid data from being stored.

BLOCK A block in IAF corresponds closely to a view or a table
in SQL. One block corresponds to one SQL table. Blocks are
made up of one to twenty records and can hold a corresponding
number of rows from its associated table. Operators enter
data into records of a block and may request IAF to insert,
update, delete or query records associated with that block.

PR SRS Pt St +
| I
[EMPLOYEE INFORMATTION |
| I
| APPLICATTION I
| I
e M mm e mm e e mm oSS oo oS oo SSoomSoooSTmToTEmTTmTT +
I I
I EMPNO: 5798 DEPTNO: 40 ENAME: JONES I
| I
| JOB: SALESMAN SAL: 2750 COMM: 355.25_ |
I |
I |
I I
I |
PR RS S SRS Sl +
Block 'EMPl' - Single Record Area

P PR R S Bl

| !
| EMPLOYTESE INFORMATTION |
| I
| APPLICATION : |
I I
PSR RSt +
I I
| EMPNO ENAME JOB SAL COMM DEPTNO |
| mmmm= mmmmmmm—m———- | mme———————s—== SmSToSS TTEEEET o TTETET I
| |
| 5798 JONES SALESMAN 2750 355.25_ 40 I
| 5840 SMITH ANALYST 1250 10 |
| 5932 JACKSON CLERK ~— 950 — 20 |
| |
| _ —_ I
I _ - _ |
I _ __ I
| _ _ |
| _ _ I
I |
I I
e ———— S oS oSS oSmomSs T m T +

Block 'EMP2' - Multiple Record Areas

Figure 2.1

The top diagram in Figure 2.1 shows a block for entering
employee information. The information displayed is from
Jones' row in the employee table. A block provides the
operator with a window to view one or more [rows in a single
database table.

RECORD - A record corresponds closely to a row of a table or
view. A record is composed of fields. Rows are identified
on the status line of the display as being stored records or
not. A stored record is one that exists in the database.
Records that are stored may be updated or deleted. Records
that have data entered into them but not yet stored may be
subsequently inserted or have queries executed against them.
A query executed against a record will attempt to retrieve
records with columns that match the data entered in that
record.

CURRENT RECORD - Although the operator may view multiple
records, only one record may be processed at a time. When
adding new records, the data items for one record are entered
stored prior to beginning the next one. The current record
area is indicated by the location of the cursor on the

screen.

FIELD - A field is a data item on the screen. They are
identified by labels which are displayed either above or to
the left of the data entry area. Reverse video or
underlining characters identify a field's data entry and
display area. A field may correspond to a column in the
table or contain data to aid the operator. In Figure 2.1 the
field "EMPNO" corresponds with the column EMPNO in the EMP

table.

Fields which are not columns of the block's table are
generally used to provide entry aids for the operator. For
instance, when entering a part number, it is helpful to
display the associated part name for verification. SQL
SELECT statements may be associated with any field in a block
that are executed when a value is entered into it. These
SELECTs may then load values into other fields of the block

which are then displayed.

There are other attributes associated with each field that
control how a field may be used, what kinds of values it may
accept, etc. More information on SELECTs and attributes may
be found in the Application Design Guide.

2.2.1 IAF Screen Format

Figure 2.2 is a layout of an IAF screen. All screen pages
have the same format. Lines 1 through 22 contain application
fields and descriptive text. Lines 23 and 24 are reserved
for use by the IAP. Line 23 is the "System Message Area"
where status, help, and error messages are displayed. Line
24 contains status indicators and is also used as an operator
entry area for the "QUERY" and "PRINT" functions.

The following is a description of each of the indicators
appearing on the status line:

"page x" is the number of the currently displayed application
page. "Char Mode:" indicates whether an entered character
will either 'Replace' the character in the cursor location,
or be inserted('Insert') to its left. "Mode :" indicates that
the operator may either query and update existing records
(QUERY/UPDATE) , or insert new records (INSERT). "Stored "
tells the operator whether the data displayed within the
'current' record area is stored in the database. Following a
"QUERY" request, the number of records which the operator has
already viewed is accumulated in the "Count:" indicator. The
status areas are discussed in more detail in the section on
"Keyboard Functions".

2.3 Keyboard Functions

As data is entered and retrieved, the operator controls the
application processing through a set of predefined keyboard
functions. A summary of these functions is provided in
Figure 2.3. Each function is invoked by depressing one or
more keys from the keyboard of the CRT. Since terminals vary
greatly in number of function keys and layout, each terminal
will have a unique sequence for invoking a particular
function. However, each terminal can display what function
keys do what by depressing the "escape" key, followed by the
'k' (lowercase) key. This key layout can subsequently be
printed out by the operator with the PRINT function described
later. Additionally, the function keys may be customized by
the user by modifying the crt definition IAF uses. This is
described in Appendix A.

WO U WK

Indicator

o e —— +
l /\ l
| / \ I
I I I
| I I
| I |
| I I
| APPLICATTIO ON |1 |
I II |
l Il |
I I I
| I |
| {mmmmr e e >
| = mmmm e Attt bttt bt >
| I I
| Il |
I |l |
I [l I
I I DISPLAY AREA |
I I |
I Il I
l \ / I
I \/ I
| " System Message Area" |
| Char Mode: Replace Page: 1 Mode : Insert Stored : NO Count :*0 |

I "pPage" || Il I I

"Character Mode" || "Number" | "Stored" || | |

"Processing"| | "Record" || I

Il Il

|l

"Mode"
"Indicator"

IAF Screen Layout

Figure 2.2.

"Indicator"

"Retrieved"| |
"Record Count"

+===================++==+
| Next Field || Perform edit checks on field before |
| || advancing to next field in record |
$m======S=S=ES=====SS= ++===================:=====================+
| Previous Field || ‘Advance cursor to previous field in |
| || block. |
+===================++===================2=====================+
| Clear Field || Clear the contents of the current fieldl
| || from cursor to end of field |
+================== ++===================:=====================+
Next Record		After Query: Move cursor to next
		record. If at last record, retrieve
		next record and display.
		After Insert: Move cursor to next area
		and initialize for data entry.
+==================—++===================:=====================+		
Previous Record		Move cursor up one record area on page
+===================++===================:====================+		
Next Set		After Query Only: Display next set of
		selected records, one in each record
		area.]
+==================_++==+		
Next Block		Terminate processing of current block
		and begin processing of next block
$=====ss==s=s==s===== ++==+		
Previous Block		Terminate processing of current block
		and begin processing of previous block
+===================++=================== mm—mmmmmmms==========+4		
] Clear Block		Clear .all the data in all record areas
		of block.
		Insert Mode: Initialize default values
		and move cursor to first record area.
		Query Mode: Release selected records
		and move cursor to first record area.
Clear Form		Clear data in all application blocks.
		Processing resumes 'in first block
+===================++==+		
Insert		Store current record into database.]
I		Must be in "Insert" processing mode
+==================_++==+		
Query		Request selection of specified records.
		Must be in Query/Update processing mode]
+===================++==+
L J

IAP Keyboard Functions *

Figure 2.3 - Part 1 of 2

Mode

Mode

|| Request that the changed data fields I
|] in the current record be permanently |
|| recorded in the database. |
|| Must be in Query/Update processing mode]

Request that the current record be |
deleted from the database. |
Must be in Query/Update processing mode]

|| Change from one character mode (Replace|
or Insert) to the other.

|| Move cursor left one position within |
current field. I

|| Move cursor right one position within |
current field. |

|| field. |

|| Redisplay current screen page after |
|| communications or terminal failure. |

Request printing of 1) Current page |
|| 2) Entire Form 3) Function key layout |

®" IAP Keyboard Functions *

Figure 2.3 - Part 2 of 2

tom—————— e ————— + tommm————— tmmmm————— fmmm—————— -
| MOVE | MOVE | I | | |
| CURSOR | CURSOR | | QUERY | INSERT | UPDATE | EXIT
| LEFT | RIGHT | | (PF1) | (PF2) | (PF3) | (PF4)
| (<=) | (=>) | | | | |
T e + fmm— fomm e fmmm—————— fomm e ———
| I | |
| NEXT | PREVIOUS| CLEAR | REDSPLY
| FIELD | FIELD | FIELD I
fmmm e + | (7) | (8) I (9) I (=)
| PREVIOUS | e e e ——— T s
| FIELD | l I | |
| (BACK | | NEXT | PREVIOUS | CLEAR | DISPLAY
I SPACE) | | RECORD | RECORD | RECORD | ATTR
tememmm———t | (4) | (5) | (6) | (,)
tommmm———— + e fmm——————— $omm—————— fomm———————
| CHARACTER| | | | | P
| DELETE | | NEXT | PREVIOUS | CLEAR | C R
| | | BLOCK | BLOCK | BLOCK | H O M
| (DELETE) | | (1) | (2) | (3) | A C O
$ommmm B $mmmmm———— O +4 N E D
| | CHANGE | G S E
---------- + O HELP |CHAR MODE| E S
NEXT | I . I I
FIELD I I (. (0) | (s) | (Enter)
(TAB) | 4em—mm———— + | 4m—mmmmmmm—mm o fmmm— e
---------- + { NEXT FIELD :
| (RETURN) |
- — +
FUNCTIONS KEYSTROKES
EXIT CTRL - Z
DELETE CTRL - D
CLEAR FORM ESC - C
DISPLAY FUNCTION
KEYS ESC - K
NEXT SET ESC - S
PRINT FORM ESC - P

IAF Punction Key Layout - VT-100

Figure 2.4

2.3.1 Processing Modes and Actions

An IAF application may be processed in either of two modes:
"INSERT" or "QUERY/UPDATE". By selecting a processing mode
the operator states their intention to either insert new
records or retrieve existing records with the possibility of
making changes. Therefore, each mode places restrictions on
the functions which the operator may perform. When initially
executed, the application is in "INSERT" mode.

CHANGE MODE Function:
An application may be switched from one mode to the

other by depressing the 'CHANGE MODE' key. The
status indicator "Mode:" on the bottom line will
alternate between "INSERT" and "OUERY/UPDATE" as the
CHANGE MODE key is depressed.

In an empty block, changing from QUERY mode to
INSERT/UPDATE mode will cause the first record to be
initialized with default INSERT values. Changing
back to QUERY mode will clear the default values.

The following functions are available only in the
mode indicated.

Insert Mode

INSERT Function:

This action will cause the contents of the current
record area to be inserted into the database table.
The application must be in 'INSERT' mode. If the
current record is already stored, the request will
be rejected. When a record has been sucessfully
inserted the "Stored: " indicator will change form
'NO' to 'YES'.

12

Query/Update Mode

QUERY Function:

This action will retrieve those records in the
database table who satisfy the defined criteria.
There are two ways to state these conditions. Prior
to selecting the QUERY function the operator may
enter data into any field. when the query is
executed only those records that have a
corresponding column value equal to the entered
field values will be returned.

For instance, after entering data into this sample
screen

DEPTNO: 30 JOB: SALESMAN

the following 'where' clause would be generated in
the query:

WHERE deptno=30 AND job='SALESMAN'

and only those rows where the 'deptno' column is
equal to 30 and 'job' column is equal 'SALESMAN'
would be returned.

The second way a user may conditionally retrieve
rows is by entering a specific consdition to be met.
After the QUERY key has been entered the operator
will be prompted on line 24 of the screen for the
additional text. Expanding on the above example,
the operator may only want to see those salesman in
department 30 with a salary greater than $2000. The
following response:

QUERY WHERE?: sal > 2000

will cause the 'Where' clause:

WHERE deptno=30 AND job="'SALESMAN' AND sal>2000

to be generated. Only those records which satisfies
all these conditions will be returned. Essentially,
any condition that could be specified 1in SQL
directly could be specified in IAF providing it may
be stated on one line. The user however must be
aware of what table is being queried and know the
names of the columns in that table. Refer to the
SQL language User's Guide for additional details on
constructing a 'Where' clause.

Following the entry of all conditions, IAF will
display rows returned by the query in each of the
blocks records. The ‘'Count :' indicator will
reflect the number of records displayed, and a YES
in the stored record indicator (Stored :) indicates
the current record is in the database. If the query
results in more rows than can be initially
displayed, the 'NEXT RECORD' and 'NEXT SET'
functions are used to view the remaining records.

Each time a new query is executed the results of the
previous query are lost.

UPDATE Function:
Following a QUERY request, the retrieved records may

be updated. One record is updated at a time. The
operator moves the cursor within the ‘'current'
record to the fields to be changed. Only fields
which were designated as ‘'updatable' may be
modified. When all the desired fields have been
entered, the UPDATE function is invoked to have the
modified data written to the database.

DELETE Function:

The DELETE function deletes the 'current' record
from the database. The deleted record is scrolled
of the screen, and each remaining record is scrolled
up on position. The last record will contain the
next record returned by the query or will be blank.

2.3.2

Processing in Either Mode: Field Control

NEXT FIELD:

This function will advance the cursor to the next
field in the current record area. If data has been
entered into the present field it will trigger the
field's edit checking. If an error is detected, an
error message is displayed, and the cursor position
remains unchanged. The error must be corrected
before the cursor can be advanced.

If the cursor is positioned to the last field of the
record, NEXT FIELD will advance the cursor back to
the first field of the current record area. If the
next field of a record is defined on a different
screen page, the new page is displayed and the
cursor positioned to the appropriate field.

A field may have been defined to use the auto skip
feature. In this case if data is entered into every
character position, the cursor will automatically
skip to the next field. This implied NEXT FIELD
will also trigger field editing.

Fields which can not be entered by the user will be
skipped over.

PREVIOUS FIELD:

This function is similar to NEXT FIELD except the
cursor advances in a backward direction to the
previous field. If the cursor is positioned to the
first field in the record area, PREVIOUS FIELD will
move the cursor to the last field in the current
record area. No edit chacking takes place when this
function is executed.

If the previous field is on another screen page, the
new page is displayed, and the cursor positioned to

the appropriate field.

CLEAR FIELD: This function will erase the contents
of the current field from the current cursor
position to the end of the field.

2.3.2.1

Character Control

CHANGE CHAR MODE:

Two modes of character entry are supported. In
'*Replace' mode, each entered character replaces the
character previously displayed at the cursor
location, and the cursor is moved one space to the
right. In 'Insert' mode, entered characters are
inserted at the cursor 1location, with all the
characters from the cursor position to the end of
the field shifted to the right one position.

The CHANGE CHAR MODE function will change from one
character mode .to the other. The current character
mode is displayed in the 'Char Mode:' indicator on
line 24.

MOVE CURSOR LEFT:
This function moves the cursor to the 1left one

position.

MOVE CURSOR RIGHT:
This function moves the cursor to the right one

position.

DELETE CHARACTER:
This function will delete the character pointed to
by the cursor. Remaining characters in the field
are shifted one space to the left, overlaying the
deleted character.

15

4-16

2.3.3

Record Control

NEXT RECORD:

Insert Mode:
For a single record block, NEXT RECORD will

erase the data area and reinitialize the
area with the default values.

A multi-record block will advance the
cursor into the next record area, and
initialize the fields with their default
values. If positioned to the last record
area, all the areas will scroll upward one
record area, with the top area disappearing
from view. The cursor will remain in the
bottom area which will be cleared and
initialized with the default field values.

Query/Update Mode:
For a single record area block, NEXT RECORD
will display the next record retrieved.

For multi-record blocks, the cursor will
advance to the next record area. If
positioned to the last record area, all
areas will scroll upward, and the next
retrieved record is displayed at the
bottom. The top record will disappear from

view.

As each new record 1is displayed the
'Count:' indicator will be incremented by
1I

NEXT SET OF RECORDS

This function allows the operator to display the
next 'n' records, where 'n' is the number of records
within the block. The 'Count:' indicator is
incremented by the number of new records displayed.
This function is used in QUERY/UPDATE mode only.

Referring to the sample blocks in Figure 2.2, this
function will display the next record in block
'"EMP1', whereas the next nine are displayed in
'EMP2'.

For multi-record blocks, PREVIOUS RECORD will move
the cursor up one record area. If positioned to the
top area, 'At Top of Block' message is returned and

the cursor is unchanged.

Once an inserted or retrieved record has scrolled
off the top of the viewing area it can not be viewed

again without issuing a new query.

Clear Record:
Clear the content of all fields in the current

record area. For INSERT mode, the fields are
initialized with their default values. If the
current recnrd area contains a database record
(indicated by Stored : YES) it can not be cleared.
CLEAR BLOCK or CLEAR FORM must be used to clear the

record area.

2.3.4 Block Control

IAF applications can contain one or more blocks. When the
application is executed, processing begins with the first
defined block.

NEXT BLOCK:

This function will terminate the processing of the
current block, causing the first screen page of the
next block 1is displayed. The data within the
current block is retained, and available if the
block is reprocessed. The cursor is positioned to
the first field within the first record area.
Blocks are accessed in the order in which they were
defined to the IAG. The NEXT BLOCK function in the
last block will take the user back to the first
block.

PREVIOUS BLOCK:

This function will terminate the processing of the
current block and cause the first screen page of the
previous block to be displayed The cursor |is
positioned to the first field within the first
record area. Blocks are accessed in the reverse
order of definition. If positioned to the first
biock, PREVIOUS BLOCK will take the user to the last
block.

CLEAR BLOCK:

This function will clear the field contents in the
current block. All record areas will be cleared.
If processing a QUERY, the records which have not

been viewed are lost.

CLEAR FORM:

This function clears an entire form or application.
All the data within each block is cleared, and
processing continues in the first block. The
application is in the same state as when initially
executed.

2.3.5 Help Functions

HELP Message:

This function will display a help message for the
current field. The message is displayed on line 23
in the System Message Area. The content of the
message is entered at application generation time.

DISPLAY ATTRIBUTES:
This function will display the attributes of the
current field in the message area at the bottom of

the screen.

SHOW FUNCTION KEYS
This function will display the function key

assignment for the current terminal type.
2.3.5 Control Functions:

REDISPLAY:
In the case of a communication 1line error, or
terminal failure, this function will cause the last

screen to be redisplayed.

QUIT:
This function causes normal termination of the IAP.

PRINT:

This function allows the operator to print the
current screen page, all the pages of the
application, or the function key layout. When PRINT
is requested the operator must specify the name of
the file where the printed output will be stored.
Any valid operating system file name is permitted.
Following the file specification the following
message will appear on line 24:

Select: 0)Abort 1l)Current Page 2)Form 3)Funct Key ? _

After choosing 1, 2, or 3, the following message
will appear:

Send File to System Printer ? _

A 'Y' response will cause the IAP to issue a system
command to have the contents of the created print
file printed on the system defined printer.

This page intentionally left blank.

COMMENTS PLEASE

Please assist us in improving this manual and in correcting
any documentation errors. Forward your comments to:

Documentation Coordinator
Relational Software, Inc.

3000 Sand Hill Road, Bldg. 3-180
Menlo Park, CA 94025

MANUAL: INTERACTIVE APPLICATION FACILITY -
Terminal Operator's Guide

SUBJECT

PAGE INCORRECT UNCLEAR INCOMPLETE

COMMENTS

Name:

Organization:

Address:

Telephone:

INTERACTIVE-APPLICATION

FACILTITY

APPLICATION DESIGN GUIDE

TABLE OF CONTENTS

Chapter 1 - Introcduction

Chapter 2 - IAF Overview

|

Chapter 3 Application Structure and Design

Chapter 4 - Application Definition - Interactive
Application Generator

Chapter 5 — Advanced Application Techniques

Appendix A - CRT Interface Utility

INTRODUCTION

1.0 Manual Objectives and Use

This manual presents the Interactive Application Facility.
It explains the purpose and features of IAF, and describes

the procedures for generating an IAF application. The
intended audience includes those persons responsible for
application design and generation. The level of presentation
assumes a working knowledge of the ORACLE Data Base

Management System and the SQL Language.

2.0 Structure of the Document

This manual is divided into four sections:

Section 2 - "IAF Overview" - Describes the purpose
of IAF and explains the component utilities;
Interactive Application Generator (IAG) and

Interactive Application Processor (IAP).

Section 3 - "Application Structure and Design" -
Presents the features and structure of an IAF

application.

Section 4 - "Application Definition - Interactive
Application Generator"™ - Describes the process of
defining and generating an application. The

generation of the sample "employee" application is
discussed.

Section 5 - "Advanced Application Techniques" -
Presents some additional techniques for using the
features of IAF.

Appendix A - "CRT Interface Utility" - Describes the
IAF utility allowing a user to specify a
non-standard CRT for use with IAF,

IAF-OVERVIEW

2.1 Introduction

IAF is an application facility which provides full screen
communication with a CRT terminal device, interpretation of
operator requests, data validation, and the necessary
database operations to store, retrieve and update the
requested data. Basic editing functicns are supported which
verify data types, check ranges, and test for existence
within a predefined table of values.

Most CRT terminal types may be used providing they have basic
cursor control features and have been previously defined to
IAF. As distributed, IAF supports the VT100, vTS2, OWL, or a
compatible device. Appendix A describes generating new crt

definitions.

An application consists of one or more screen pages. Figure
2.1 is an example of a single screen page. Each page may
contain one or more data input and display areas. A display
field may correspond to a column in a database table. In
figure 2.1 each display field corresponds to a column in the
"EMP" table in the ORACLE sample "PERSONNEL" database. The
page may be enhanced with prompts, help text, and format
characters to improve readability.

Operators interact with IAF applications via a predefined set
of keyboard functions. These functions allow the operator to
move from field to field, screen to screen, initiate insert,
retrieval and update operations, control the application
processing modes, and request help information.

Data is entered a field at a time. After a field is entered,
the cursor is automatically moved to the next field area.
Edit criteria may be associated with any input field. A
field may be tested for data type (character or number),
format (ie. date), value range, or existence in a table of
acceptable values. If the input field is incorrect, the user
is immediately notified, and required to correct the error
before the process can continue. 1In this manner the user is
guided through a display until the input process is
completed.

EMPLOYEE PERSONNEL RECORD FORM

EMPLOYEE NUMBER : 7956_

NAME : MARTIN

JOB : ANALYST

SALARY : 4380__
COMMISSION

DEPARTMENT NUMBER : 30 NAME : SALES

Figure 2.1 - ‘Sample Application Screen Layout'

When requisite displays fields have been filled, the data may
be inserted into the database via keyboard function. Data 1s
stored a row at a time. Once stored, that row is immediately

available to other users.

An IAF application may be used to retrieve previously stored
data. Upon retrieval, the data is formatted and displayed on
the user's terminal. Data is retrieved one row at a time.
once displayed, the user is free to modify any field which
has been designated for update. When all modifications are
completed, a keyboard function will initiate the updating of
the database. Data which is no longer needed may be deleted.

2.2 Component Description

The Interactive Application Facility consists of two utility
programs. The Interactive Application Generator (IAG)
interactively communicates with the designer to define the
user's application. The Interactive Application Processor
(IAP) executes the defined application under the operator's
control. Figure 2.2 illustrates the relationship between

these utilities.
2.2.1 1Interactive Application Generator

The IAG utility is executed from the application designer's

terminal. The designer must specify the name of the
application being defined. For new applications IAG will
begin the gquestion and answer session. For existing

applications a previously created reponse file may be used.
The questions address the following areas:

- Database to be referenced within the application.

- Specification of associated database tables and
columns.

— For each field (column) within a table:

Edit criteria to be applied to input data.

Initial value assigned to this field.

- SQL statement to be executed when the field is
entered or retrieved.

- pPlacement of field on a screen page

- Placement of prompts, explanatory text, and line
drawing characters on each screen page.

———————— o e}
/ \ | INTERACTIVE I
| Questions |{-—-—=—=—-- > | e
I & | {(=====-— > | APPLICATION === >|] <applname>.inp |
\ Answers / | J{mmmmm == ->
———————— | GENERATOR (IAG) | Fom o m e
—————————— e e
/ \ I "Response File"
—————————————— Il
P
"Application Designer" i
\ /
\/
et +
| <applname>.frm | "“Application Image File"
I I
o +
I
P
Il
I
\ /
\/
________ e e ——
/ NAME: \ I INTERACTIVE | USRS S SR
| ADDR: |<-=-—=———- > APPLICATION [{mmmmm——— > USER'S
| A St > PROCESSOR [{—=—=m—-— > DATABASE
\ . / | (IAP) | e aanatat el +
________ g

"Terminal Operator"

Application Development Process

Figure 2.2

These questions will be asked repetitively until the
application is defined. When the definition is complete, IAG
compiles the responses into an internal format and stores the
result on disk. The generation process is now complete and
the application can be executed.

As the designer responds to each question, the question text
and associated response is saved in an input work file. This
file may be used as an alternate input source in subsequent
sessions with IAG. Hence, by altering a saved answer file
and re-executing IAG, existing applications can be easily
modified. A standard text editor may be used to modify the
reponse file.

2.2.2 Interactive Application Processor

An IAF application is executed by invoking the IAP utility.
The operator specifies the name of the *image file'
previously created by IAG. I1f the referenced database is
secure, the user will be prompted for a valid user id and
password. In addition, a user must be granted privileges to

the desired data.

Figure 2.3 illustrates the relationship of IAP to the
terminal operator and ORACLE database. On the front end IAP
provides the screen handling functions which communicate with
a CRT terminal, interpret the operator's request, control the
processing flow, and validate, convert, and format the data.
The back-end uses the standard facilities of the Host
Language Interface to execute SQL statements which
communicate with the user's database.

The 'image' file contains a set of tables which describes the
application. The information provides the screen formats,
individual field descriptions, and overall structure. IAP
uses these tables to guide the application processing.

The IAP utility is viewed by ORACLE as any other application
program using the SQL interface. As the operator enters
data, the appropriate edits are performed and SQL (SELECT,
INSERT, UPDATE, or DELETE) statements are executed against
the database. '

/ NAME: \
| ADDR l
I . |
\ . /
" TERMINAL " = ———-----
OPERATOR --—==-=- _—
/ \
/\
/\
[
[
AN
\/
++====================:========:===========++
I I
I SCREEN HANDLER -- TERMINAL INTERFACE ||
I |
[+=-- e o e — +1
[DATA | APPLICATION I
|| EDIT / VALIDATION | FLOW OF CONTROL {1
[+ ——mmrm e s +1
[l "solL" |
! |
I HOST I
Il LANGUAGE INTERTFACE P
[I
++============:===:====================::====++
| |
| i " 0 R A C L E " I
I I
++===++
/\
/ N\
Il
P
\ /
\/
o e +

Interactive Application Processor - IAP

Figure 2.3

4-28

The operator uses the IAP function keypad to control the
application flow. The operator is free to choose which
screens to process and the order of processing. Repetitive
processing of a screen allows the operator to enter or
retrieve multiple rows of data. When the operator's tasks
are completed, the 'Quit' function will terminate IAP. For
additional information on executing IAP refer to the "IAF
Terminal Operator's Guide".

APPLICATION-DESTIGN

3.1 Introduction

This section will present the basic structure of an IAF
application. The objective is to provide the reader with a
general understanding of an application's components,
providing sufficient information to understand the design and
definition of a simple application. The details on defining
an application will by deferred to Section 4 : The
Interactive Application Generator (IAG)

3.2 Sample Application

Throughout this chapter references will be made to two sample
applications. These applications were designed to utilize
most of the features of IAF, and will illustrate the concepts

being presented.

The first application uses the "EMP", "DEPT", and "PROJ"
tables within the ORACLE "PERSONNEL" database. They were
chosen because the reader is already familiar with the data
in these tables from the SQL Language Examples. A few simple
screens will be defined which allow entry and retrieval of
data from these tables. Figure 3.1 provides the
application's screen layouts which will be referenced in this
manual and the "IAF Terminal Operator's Guide". Figure 3.2
shows the columns defined for these database tables.

The second application is an on-line order entry system. It
is designed to allow operators to enter orders by storing the
information directly into an ORACLE database. Figure 3.3
shows the three screen forms available to the order operator.

EMPLOYEE PERSONNEL RECORD
NUMBER : SALARY
NAME : COMMISSION :
JOB :
DEPTNO: __ DEPT NAME
EMPLOYEE PROJECT ASSIGNMENTS
PROJNO PROJECT NAME

"Employe® Application Screen Layout

Figure 3.1

Database: 'personnel'

+
i
it
il
it
i
I
]
i
]
]
"
]

+
I
]
i
i
1]
1]
I
i
]
i
]
]

Table Name

empno

projno
pname

$————t ——t————t —_——— —— 4 — &
i
0
Q

number
char
char
number
number

number
char

number
number

unique]|
non-un |
non-un|

non-un|

uniquel

*Employee®™ Application - Database Tables

Figure 3.2

I |
| ORDER ENTRY APPLICATION l
|

| " ORDER FORM" i
| |
SRR S S +
I |
| ORDER NUMBER: DATE: |
[|
e —————— e ——— o — e ——— o +
I CUSTOMER INFORMATION | SHIP TO INFORMATION |
e — o e — e +
| CUSTNO: | |
| NAME: | NAME : I
| ADDR: | ADDR I
| CITY: [CITY: I
| STATE: Z1iP: I STATE: Z1P: |
eyttt o mm— e —— e —— e ——— +
I PURCHASER: |
e +
|Next Form is : Order Item Form Previous Form is : Qrder Browse Form |
T T R +
PR RS S Lttt +
| ORDER ENTRY APPLICATION :
|

| " ORDER I TEM FORM?" |
| I
Ittt +
| I
[LINENO PARTNO DESCRIPTION PRICE QTY/UNIT UNITS I
|

| SPECTIAL INSTRUCTIONS: |
| |
| SPECTIAL INSTRUCTIONS: |
| |
| SPECIAL INSTRUCTIONS: I
| i
| SPECIAL INSTRUCTIONS: I
| I
| SPECTAL INSTRUCTIONS: I
| |
R R EE S S +
|Next Form is : Order Browse Form Previous Form is : Order Form |
s +

Figure 3.3 - ‘'Sample Application - Form Layouts'

4-33

+ ___
| ORDERNO CUSTNO CUSTNAME ORDER DATE PURCHASER

|

|

| —

|

I

I

|

|

+ ___
| Retrieve Order Summary : Enter field values for desired ORDERS.

l Select Inquiry function key.

e e —————_—_——————_— e —
| Review entire Order and/or Update Order Information:

I Move cursor to desired ORDER; Select Previous Block Function

o e ————————————— e — - — =
| Next Form is Order Form Previous Form is Order Item Form

o e ————————_—— - —

Figure 3.3 - 'Sample Application Form Layouts' (Continued)

To enter an order the operator executes IAP to bring up the
"ORDER FORM". This form allows the operator to enter general
order information. After this data has been entered and
stored, the "Order Item Form" is processed to enter each
ordered item. Another form is provided to aid the operator
in reponding to customer inquiries. The "Order Browse Form"
allows the operator to search the database using one or more
search fields to retrieve a list of customer orders. Once

located, the operator may use the previous two forms to
review and modify the order information.

Figure 3.4 lists the database tables and columns used in this
application. The ‘'order' and ‘'orderitem' tables are of
primary interest, and are used to store the information
associated with each order. The other tables are used for
reference purposes only. The 'part' table provides a list of
valid parts. Later in this section a technique will be
presented for restricting part numbers to those in the list.
The table also supplies information about the ordered part.
In the same manner, the ‘'state' and 'customer'’ tables provide
a list of valid entries and related information. The state
code for the entered city is supplied by the 'citystate'

table.

3.3 Application Structure

The next section describes the components of display
generation. Section 3.3.1 describes a display block, which
is a functional unit of a display. Section 3.3.2 describes
field specification; a field is a component of a block.
Section 3.3.3 describes screen format capabilities; and
Section 3.3.4 discusses terminal support details.

3.3.1 Block Specification

An IAF application consists of one or more application
blocks. Each block consists of a collection of fields which
map to a single database table. All tables referenced in an
application must reside in the same ORACLE database. An
operator may process in only one block at a time.

Within each block, the collection of fields may be displayed
multiple times. This allows multiple records (or rows) from
the defined table to be displayed simultaneously. However,
only one record may be processed at a time.

Database:

Table Name

SAMPLE

'order'

Column Name

'ORDER ENTRY'

Data Type

APPLICATION

Length

DATABASE-TABLE-DEFINITIONS

Image

date
custno
purchaser
shipname
shipaddr
shipcity
shipstate
shipzip

number
number
number
char
char
char
char
char
number

unique

non-unig

orderitem

orderno
lineno
partno
partprice
ordergty
instruct

number
number
number
number
number
char

non-unig

customer

custno
custname
custaddr
custcity
custstate

number
char
char
char
char
number

unique

Figure 3.4

Wwhen thinking about an interactive CRT application, it is
common to associate a screen page with the logical unit of
work. An operator thinks in terms of processing a display a
page at a time. Although IAF allows an application to occupy
multiple pages, the wunit of work is a block, or more
precisely a current record within the current block. The
distinction is important in understanding the flow of IAF
applications. A loose association exists between a block and
the application's screen pages. A block may span multiple
pages, or multiple blocks could occupy the same page. The
application designer has complete freedom to position a field
within a block. The display location of a field will be
discussed later in this section.

In the sample order entry application three blocks have been
defined. Figure 3.5A defines the relationship between each
screen page and the associated block and database tables.
The 'Order' block was defined with one record display area,
therefore only one record occurrence of the order information
may be displayed. In contrast, the 'Orderitem' block
contains five record display areas permitting up to five
orderitem records to be simultaneously displayed.

Figure 3.5B describes the blocks associated with the
"employee" application.

3.3.1.1 Block Control

IAF provides the capability for an operator, within a
multi-block application, to terminate the processing of one
block and begin another. When an application is executed the
operator is positioned to the first block which was defined
in IAG. The terminal operator can move from block to block
using the 'Next Block' and 'Previous Block!'! function keys.
The order of block processing is determined by the order of
definition. Requesting the ‘'Next Block' function while
processing the last defined block will jump forward to the
first block. Conversely, a 'Previous Block' request in the
first block will cause the last block to be processed.

orderitem

browse

Order Form
Order Item Form orderitem

Order Browse Form| order

order Entry Application - Block Specifications

Figure 3.5A

o o fommm fomm +
| Block Name | Form Name | Table Name | Record Areas |
T o fmmmm e ——————— fommmm—m +
: emp | Personnel Record | emp : 1 :
I : |
| projects | Projects | pe I 3 |
| | Assignments | I [
| | | | |
o e e fommmm +

Employe Application - Block Specifications

Figure 3.5B

The blocks of an application are logically chained in the
order in which they were defined. The chain for the order
entry application is illustrated in figure 3.6. The 'Order'
block is the first to be processed. Normally, the operator
would depress the 'Next Block' function key to execute the
‘Orderitems' block. When the order is completed, 'Previous
Block' brings the operator back to the 'Order' block in
preparation to enter another order.

Processing a customer inquiry requires the wuse of the
'Browse' block. The block is obtained by advancing forward
using the 'Next Block' or backwards using the 'Previous
Block' keys. From this block the operator can query existing
orders. when the desired order has been 1located, the
operator can view the expanded order information by advancing
to the 'Order' block.

When an operator leaves a block the current data is preserved
and will be redisplayed when that block is re-entered.

Advancing blocks in this manner may become tedious,
especially if they are processed in a random order.
Sequential block processing poses less of a problem. Trial
and error will determine an optimal size for an application.
Breaking a large application into multiple applications, with
fewer blocks, may simplify the operator interface.

3.3.1.2 Block Processing Modes

An application block can be processed in either 'Insert' or
'Update' mode. The processing mode states the operator's
intentions. In 'Insert' mode, records may only be inserted.
In update mode, records may be retrieved; retrieved records
can be updated or deleted. Although IAF will permit any user
an attempt to retrieve or modify data in a table, ORACLE will
reject the request if the appropriate database access has not

been granted.

When an application is initially executed it is automatically
placed in 'Update' mode. The 'Change Mode' function switches
the mode of operation. A mode is retained until explicitly
changed by the operator. Advancing from one block to another
does not effect the processing mode.

"Next Block” Fommmm +
e > | |
| | "browse" :
| [

"Next Block" +————- | mmm + | |
Hommmm o > | | | I
| | "orderitem"] | BLOCK |
I I I | I

= e + | | I I
| | ! | |
| | BLOCK | =] ————————————— +
"order" | | | |
| f | |
| |] |
BLOCK | etttk +]
| |
| {mmmmr e e +
| "Next Block"
_________________ +

"order Entry”* Application - Block Processing Order

Figure 3.6

3.3.1.2.1 1Insert Mode

To insert a record the application must be in 'Insert Mode'.
'Clear Block' will clear the block and initialize any default
values. The operator can then enter data into any field
which was defined as enterable. Fields are entered one at a
time until all the fields within a record area are complete.
Movement from one field to another is accomplished using the
'Next Field' and 'Previous Field' functions. The 'Insert'
function signals the completion of data entry and triggers
the insertion of a new row into the table.

3.3.1.2.2 Update Mode

Within 'Update’' mode, an operator may construct an inquiry to
retrieve one or more stored records. To retrieve a record,
the operator may supply field wvalues for the associated
columns in the target record. The 'Inguiry' function
initiates the retrieval of data. IAP will dynamically
construct a SQL query with a SELECT clause listing all the
database fields in the block, and a WHERE clause specifying
an '=' condition for each entered value. The operator may
explicitly supply additional retrieval conditions which are
added to the generated WHERE clause.

If no field values were entered and no additional conditions
are supplied, a WHERE clause will not be generated, and every
row in the table will be returned.

For example, using the 'Order' block the operator could
request all the orders for customer '18945"' . The entered
data would be

CUSTNO: 18945

Since no additional WHERE clause conditions were specified,
the following SQL statement will be created and executed by

IAP:

SELECT *
FROM ORDER
WHERE CUSTNO=18945

-

After depressing the 'Inquiry' key, the operator will be
prompted to supply additional WHERE clause text. Up to one
line of input is permitted. The entered text is appended to
the IAP generated WHERE clause. The 'AND' logical operator
is used to connect the generated predicates with those

supplied by the operator.

This supplemental text offers the operator greater
flexibility in selecting the records to be retrieved. If no
fields are entered within the block, only the supplemental
text will comprise the WHERE clause. An ORDER BY clause
could be specified as part of this text, allowing the
resultant rows to be returned in a sorted order.

Following the retrieval request the records satisfying the
query will be displayed. The maximum number of records
displayed is equal to the number of record areas defined for
the block. If more records are retrieved than can be
displayed, the 'NEXT SET' function will cause the next page
of records to be displayed. The record areas may be scrolled
by entering the 'Next Record' function when the cursor is
positioned on the bottom line. In this case records are
scrolled up , with the next record displayed in the bottom
area. The top record will disappear from view. There is no
facility to page backward; the retrieval operation must be
re-executed to review a passed record.

3.3.1.2.3 Updating a Retrieved Record

Retrieved records may be updated one at a time. Only the
record in the 'current' record display area can be updated.
The 'current' record area is the area in which the cursor is

positioned.

Only fields for which update has been allowed may be
modified. When all the desired fields have been modified,
the 'Update' function is used to write the updated record to

the database.

The operator may move the cursor to another record display
area using the 'Next Record’ and 'Previous Record' function

keys.

3.3.1.2.4 Deleting a Retrieved Record

The 'Delete' function deletes the ‘'current' record from the
database.

3.3.2 Field Specification

A block can contain one or more fields. Each field within a
block is identified by a unique name. Field names do not
have to be unique across blocks.

'Database' fields map directly to a column in the block
defined table. Fields which are not mapped are called
'Control' fields. Control fields can be entered by the
operator, or initialized with database information. They are
useful for carrying data forward from block to block, or as
reference aids for the operator.

The application designer can specify whether a control or
database field can be entered by the operator. Updating a
database field may be permitted only if the field is not part
of the primary key (see Section 3.3.2.3 for a discussion of

primary keys).

In the ‘'Order' block, order number is an example of a
database field. Its value is mapped to the 'orderno' column
in the ‘'order' table. An operator can input a value into
this field, but since the field is part of the primary key
updating is not permitted.

The customer name is a control field and is used to verify
that the correct customer number has been entered. Entering
this field is not permitted.

3.3.2.1 Field Data Types

Each field has an assigned data type. The type will
establish a set of validation rules which will be applied
when the field is either entered or modified.

43

3.3.2.1.1 Character Data Types

Two character data types are supported. The column
associated with this field type must be specified as 'CHAR'
on CREATE TABLE statement.

Alpha - Only alphabetic characters A thru Z and
space are permitted

Char - Any printable character is acceptable

3.3.2.1.2 Numeric Data Types

There are three explicit forms of the numeric data type.

Number - May contain the digits '0' thru tg', 'E',

t4', '-', and '.'. Numbers may be entered or
displayed in scientific notation (ie. 3,287 is
3.287E3) .

Int - Only integer numbers are accepted. Only
digits '0' thru '9!', '+' and '-' are accepted.

Money - A special number format for field which

contain money values. Excludes scientific notation,
and is limited to two digits to the right of the

decimal point.

3.3.2.1.3 Date Data Types

There are three 'date' data types. Each has a specific
entry/display and storage format.

Date - The entry/display format 1is mm/dd/yy:; a
length of 8 is required. The values for mm, dd, and
yy are validated. mm must be in the range 1 to 12,
dd must be in range implied by the month including
leap years. The value is converted and stored in a
Julian Day number format (Discussed below).

Edate - Similar to 'date' type except entry/display
format is in European date format (dd/mm/yy) . The
same validation is used and the value is stored in

Julian Day number format.

YYMMDD - The entry/display format is mm/dd/yy and
has the same validation as 'date' type fields. The
value is stored as a 6 digit integer in the format
YYMMDD.

IAF converts and stores 'date' and 'edate' type fields from a
calendar date into its corresponding Julian Day Number. On
output, fields of this type are assumed to be in Julian Day
format, and are converted back to calendar date. Simple
mathematical manipulation (such as addition or subtraction of
days) may be performed on date data in this format. There
are limitations with 'date' and 'edate' type fields. No
format conversion is performed on 'date' and ‘'edate' type
fields when referenced in Host Language program calls.
Therefore, when these fields are referenced in a host
program, they will appear as a julian date in numeric form.
If calendar date format is required in such a program, logic
would have to be included to perform the conversion from
julian number format to calendar date format. The algorithym
for converting to and from julian day is included with the

documentation.

3.3.2.1.4 Time Data Type

Time - Defines a field type of 'time' with an
entry/display format of HH:MM:SS. The field must
have a length of 8. Entered values will be verified
for a valid time. The stored format is the number
of seconds from midnight.

The 'time' format is only recognized by IAF; an operator
using UFI or a Host Language program would have to perform
their own conversion.

3.3.2.3 Default values

A default value may be assigned for any data or control
field. The default values are used only when a block is
processed in 'Insert' mode. When the block is 'Cleared' the
default values will be displayed. The default value may be a
literal, system default, or the value of another field.
Literal values must conform to the valid formats for the
field's data type. The system defaults are the current date
for date type fields, and the current time for 'time' fields.

If a field's default value is to be copied from another

45

field, both fields must have the same data type. The copied
field should be from a different block. .np Assigning a
default value and designating a field as, "non-enterable”
restricts the value to the default. For example, in the
"employee" application, a version of the application could be
generated which would restrict user's to entering employees

only into a specific department.

If a default is not specified and no data is entered, the

field is assigned the "NULL" value.

3.3.2.3 Pield Initialization

3.3.2.3.1 Copying the Primary Key

The term primary key is used in ORACLE to refer to the first
column defined in a table. However, in IAF, the term is used
in its strictest sense to mean that collection of columns
which uniquely identifies a row in a table. Some tables may
not have a primary key in this sense if there are rows in the
table which are duplicated. Currently in IAF, only tables
which have a primary key can be updated. This is because IAF
qualifies 1its updates and deletes by the primary key.
Updating a row then, will have the effect of updating or
deleting all rows where the set of columns comprising the
primary key has the same value as the row being updated.

IAF allows the user to specify those fields in a block which
comprise the primary key. Any field which is part of the
primary key may have its value copied from a field in a
different block. The value will be copied in both '*Insert'
and 'Update' modes. 1In a relational system, the relationship
between two tables is established by a common domain. For
example, employees and departments by department number, and
orders and line items by a common order number. This
facility allows these records, which are entered in separate
blocks, to be related by automatically copying the common

data from one block to another.

In the 'Orderitem' block the order number is not displayed.
However, order number is necessary to associate a set of line
items with a particular order. In the ‘'Order' block
definition, 'orderno' is defined as a non-display field whose
value is copied from the 'orderno' field in the ‘'Order'
block. Thereby the common order number is automatically
carried forward into each 'Orderitem' record.

3.3.2.3.2 Selecting Into a Field

A SQL SELECT statement may be defined with any field. This
query is executed each time a field is entered or modified,
and also after a query. This SELECT should not be confused

with the SELECTs which are implicitly created by IAP to
retrieve records into a block. The SELECT may serve three

purposes:

- Test for the existence of a field's value in a
table of acceptable values.

- Select information to be displayed which will aid
the operator in verifying the correctness of the
input.

- Select information to initialize the value of one
or more fields.

The last two purposes will be discussed in this section.
Refer to section 3.3.2.5 for a discussion on "Existence

Checking".

Any field can be assigned a value which is returned by a SQL
query. The 'INTO' clause identifies the block fields where
the data is to be returned. Each field named is postionally
associated with a corresponding column name in the 'SELECT'
clause. The 'FROM' clause identifies the queried tables.

Only the first row returned from the query is processed. All
subsequent rows are ignored. The fields identified in the
'"INTO' statement are assigned the corresponding values
returned in the first row.

The 'WHERE' clause should normally contain a single predicate
of the form:

WHERE <column name> = &<field name>

where <column name> is the database column associated with
the specified <field name>. The '&' designates the <field
name> as a substitution variable whose value will be
substituted into the 'WHERE' prior to execution. The <field
name> is commonly the field in which the SQL statement is
being defined.

For example, 'partno' 1in the ‘orderitem' block has the
following query defined:
SELECT desc, price, unitgty
INTO orderitem.partdesc, orderitem.partprice,
orderitem.unitqty
FROM part
WHERE partno = &orderitem.partno

Field names may be qualified by the block name they reside in
and this is generally considered a good idea, especially if
the field name appears in more than one block. When a part
number is entered the query is executed, and the fields
'partdesc', 'partprice', and 'unitqty' will be assigned the
values returned. These values will be immediately displayed
and overwrite any previous values. For each new value of
'*partno', the SQL query is re-executed, and the fields in the
'"INTO' clause re-initialized.

In the above example, 'partdesc' is the description of the
entered ‘partno'. This information aids the operator in
determining whether the correct part number was entered.
'partprice’ and 'unitqty' initialize the part and quantity
fields and which will be stored with the related line item.

NOTE: When SELECTS are executed, not all fields appearing in
the INTO list may be set. In INSERT mode, all items will be
set. However in QUERY/UPDATE mode, only those fields which
are not columns in the table associated with the block will
be set. The reason for this being that when records are
retrieved, the stored value should not be overwritten by a
field SELECT which executes after a row is returned.

3.3.2.4 Record Uniqueness

IAF has an opton that allows a user to verify that a record
is unique prior to inserting a record. Unique in this case
means that no two records will have the same primary key (as
defined above). This is because ORACLE can prevent
duplicates only in the case where one column defines the
primary key. The uniqueness check is performed when all the
fields in the primary key have been entered. I1f the record
is found to exist already, the entire record as it is stored
in the database will be retrieved and the message "Record
already exists" will be displayed, otherwise the message "End
of Query" will be displayed. This option only occurs if in

INSERT mode.

IAF will not allow fields within the primary key to be
updated. If these fields need to be modified, the record
must be deleted and re-inserted with the new values.

3.3.2.5 Field Editing

The IAP utility will perform edit checks on fields as they
are being entered for either update or insertion. I1f a field
fails an edit check the operator is immediately notified and
requested to enter correct information.

The following is a list of the supported edit checks:

Data Type Check
The field will be verified based on the defined data

type (Alpha, Char, Number, Date, etc.).

Length Check
The defined length of the field determines the maximum

number of characters allowed. Less than the maximum
is allowed unless the field is defined as fixed
length, requiring each position to be entered (ie. zip
code, telephone number, etc.).

Range Check
A value range may be specified for a field of any data
type. A high value, low value or both may be
specified.

Required Field Check
A value can be required for a field. The value can be

entered by the operator or assigned as a result of a
copy, SELECT or default value.

Note that if a value is not required for a field, but
the associated database column is defined as NO-NULL,
the update or insert will be rejected by ORACLE.

Existence Check

As discussed in section 3.3.2.3.2 "Selecting Into a
Field", a SQL statement may be defined which checks
the existence of the entered value in a database
table. The single predicate in the 'WHERE' clause
compares the column with the entered field value. If
no rows are returned , the field value does not exist
in the table, and the entry is rejected.

For example, in the 'Order' block, the entered value
for state code is compared with a list of valid state
codes. The following SQL statement was defined within
the 'shipstate' field:

SELECT state
FROM state
WHERE state = &shipstate

Note that no INTO clause was specified; therefore, no
fields were initialized as a result of this query.

3.3.2.6 Operator Aids

A help message can be defined to aid the operator in entering
correct information. This message is displayed at the bottom
of the screen page when the 'Help' function is requested.

A 'Display Attributes' function allows the operator to
request the information about the current field. The message
is displayed in the system message area at the bottom of the
screen. The attributes include the field's data type,
whether is is updatable, and whether it is mandatory.

In addition to this requested information, the current screen
page, block processing mode, character insert or replace
mode, and number of records retrieved are continuously

displayed at the bottom of the screen.

Error and status messages are also displayed when necessary
in the system message area.

3.3.2.7 Field Display

A field can be defined as either display or non-display. For
display fields, the page, line, and column location on the
screen must be specified. Each displayed field can have a
prompt message which is displayed above or immediately to the
left of the field's display location.

More than one record area can be defined for a block. The
application designer can define the number of lines in each
record display area, the number of display areas, and the
base or starting line of the first record area.

For example, the 'Browse' block can contain 8 order records,
with each record displayed on a single line. If a query
results in more than eight rows, the record display area will
scroll up, with new records appearing at the bottom, and
earlier records disappearing at the top. The scrolling
operation is controlled with the 'Next Record' or 'Next Page'
functions. once a record has scrolled off the screen, the
query must be reissued to be viewed again.

Field prompts will always be displayed within the first
record area. If multiple areas are defined, the prompts can
optionally be repeated in every area.

The 'Orderitem' block allows input and display of multiple
order items. The 'SPECIAL INSTRUCTIONS:' prompt is repeated
in each record as an operator aid. As records are inserted,
the 'Next Record' key will advance the cursor to the next
record area down the screen. When the screen is full, the
‘*Next Record' key will scroll the records up, allowing a new
record to be entered in the bottom area.

3.3.3 Screen Formatting

Each application block can occupy one or more screen pages;
more than one block can reside on the same page. Page
numbers are assigned by the designer. The numbers define

specific pages but do not imply a processing order.

A screen overlay of descriptive text may be defined for any
page. The text is specified separately from the block and
field definitions. IAP will merge the prompts and field
values with the screen image format, forming the composite

page.

Figure 3.7 shows the line drawing and explanatory text used
to create the screen display for the 'Order' block.

3.4 Terminal Support

An IAF application can be executed from any CRT terminal
device which has basic cursor control, character by character
transmission, and has been defined using the procedure
outlined in the "IAF Terminal Operator's Guide". The user
has complete flexibility in function key and control sequence
definition. A terminal identifier is associated with each
definition. This identifier 1is specified when IAP |is

executed.

ORDER ENTRY APPLICATION

" ORDER FORM"

S ettt e
| Next Form is : Order Item Form Previous Form is : Order Browse Form

'*Screen Formatting Text'

Figure 3.7

Pages 4-54 through 4-55 have been omitted.

4-55

Pages 4-54 through 4-55 have been omitted.

APPLICATION-DEFINITION

INTERACTIVE-APPLICATION
GENERATOR

4.1 Introduction

The Interactive Application Generator (IAG) is used to define
an IAF application. Interactively executed from the user's
terminal, IAG will enter into a dialogue whereby questions
will be asked about the application. These questions fall
into the following categories:

+ General questions about application execution
+ Block specification questions
+ Field specification questions

+ Screen layout - Descriptive text specification

As each response is entered, IAG will save the question text
and associated response in a user file. IAG can later be
directed to use the response file as an alternate input
source to regenerate an application.

For simple application changes the response file may be
edited using a standard text editor. For more extensive
changes the response file can be combined with additional
terminal entered input. Commands are provided which direct
IAG to alternate between these input sources.

When an application has been completely and correctly
defined, IAG will compile the responses into an IAP
executable module. To execute the application, the user must
invoke the IAP Utility as described in the IAF Terminal

Operators Guide.

This section will present the application definition process.
Figure 4.1 describes the components of the application
development process. A conceptual overview of IAF, and a
description of its features was provided in sections 2 and 3.
That material should be referenced to provide the overall
structure and design of an application, and explain the
implications of the IAG questions and responses.

4-57

———————— R ettt
/ \ | INTERACTIVE |
| Questions |[{---=--- > | | oo
! & [<=====-- > APPLICATION | {==m—m—== >|] <applname>.inp |
\ Answers / | | {—=mmmm—- >
———————— | GENERATOR (IAG) | Fomm e
---------- o et
/ \ I "Response File™
-------------- I
Il
"Application Designer" I
\ /
\/
o + ’
| <applname>.frm | "Application Image File"
| I
ettt +
|l
I
bl
Il
\ /
\/
-------- ittt 2
/ NAME: \ l INTERACTIVE | fomm e +
| ADDR: |<=————-- > APPLICATION | {mmmmm——— > USER'S
| N RSttt > PROCESSOR | Kmmmmm—— > | DATABASE
\ . / | (IAP) | e e L B e +
———————— e ettt o

———— - —————————

"Terminal Operator"

Application Development Process

Figure 4.1

4.2 Executing the IAG Utility

IAG is invoked from the user's terminal by entering the
following command:

IAG <applname> [-<options>]

Where:

<applname> Name of the application being defined.
Any character string which is acceptable
as an operating system file name is

allowed.

When IAG is invoked, it will automatically search for an
existing response file with the name '<applname>.inp’'. If
present, this file will be used as the input source.
Additionally, for each execution a new version of the
response file will be created. When the host operating
system is RSX11M, VMS or IAS, the new file will be assigned
the next highest version number.

The <options> parameter permits the user to control the
creation and use of the response file. This parameter is
optional.

T - Direct IAG to use the response file for
input; suppress terminal output of the
question and answer text. Only error
messages will be displayed.

S - Suppress question text when creating the
new response file. Only a list of the

responses will be saved.

o - Suppress creation of a new version of the
response file.

4.3 Defining the Application

An application is defined by responding to a series of
questions. These questions fall within the general category
identified by the question number:

G-x ’ -General Questions about the application

B-x -Block Questions

F-x -Field Questions - field specification
information

D-x -Field Display Questions - field display
information

E-x -Field Edit Questions - field editing
information

Figure 4.2 provides a list of these questions with their
associated numbers. The question numbers are used to aid in
the discussion, but will not be displayed during IAG

execution.

In addition free-format descriptive text can be specified for
each screen within an application.

Figure 4.3 provides an outline of the order in which the
categories of questions are asked. First, the general
questions about the application are presented. Then the
first block is specified. Within that block, each field is
defined. When all the fields in one block have been defined,
that block specification is complete. The block questions
will be reasked for each successive block in the application.
Lastly, the user can define additional descriptive text for

any screen page.

Certain questions are conditionally asked depending on
previous responses. The column labeled 'A/C' in Figure 4.2
indicates whether the question is 'A'-Always or
'C'-Conditionally asked. For conditional questions, the last
two columns identify the responses to other questions which
will cause the indicated question to be asked. If more than
one condition is listed, each condition must be met, unless
an 'or' is specified.

MMM EEo oo
2N I L T O O A A R A B A

WOoONOAUNMBWNEFEAUTLWNDEDN -

AN DWNH

COUDUU mm mMmAmEEEE AP ED ED 00

INTERACTIVE—APPLICATI()N—GENERATOR

Question List

e — e ————— - b pomm +
o.]| Question Text IA/ClResponse To =?no.|
e — e e o === | = [
| Database : .. |
| Sequel Workspace size ? la | I
Block name: la	
Table name: la	
Check for uniqueness before inserting Y/N la	
Buffer how many records ? A	
Base CRT line ? IC 1> 1	B-4
How many physical lines per record ? IcC > 1	B-4
Field name : A	
Type of field la	
Length of Field : a	
Is this field in the base table Y/N: 1A	
Is this field part of the primary key ¥Y/N :	[C
Field to copy primary key from : IC Y	F-5
pefault value : ja	
Allow field to be entered Y/N :	C
Allow field to be updated ¥Y/N : IC IN	F-5
I I Y	F-8
0	sSQL > la
1	Message if value not found :
page : [a	
Line :	C
Column :	C
Prompt :	C
Display prompt above field Y/N	C
Display prompt once for block Y/N	C
I I 1> 1 | B-4
+———— PSRRI R utatatadabe fommfmmmm +

Figure 4.2

————— o e m e m e m—— o ——— = —
?-no.| Questinn Text |A/C|Response To |?no.|
————— o e m e — e m b e ——— == —
E-1 |JIs field mandatory Y/N : [C |non-blank ID-1 |
| | 4 | F-8 |

E~2 |Is field fixed length Y/N |C Inon-blank [D-1 |
| l Y |F-8 |

E-3 |Auto jump to next field Y/N |C |non-blank |D-1 |
[I Y |F-8 |

E-4 |Convert Field to upper case Y/N |C |non-blank |D-1 |
| | 4 |F-8 |

E-5 |Help Message IC |non-blank ID-1 |
| | Y | F-8 |

E-6 |Lowest value : |C |Inon-blank |D-1 |
I l Y |F-8 |

E~7 |Highest value |]C |non-blank |D-1 |
| [|y |F-8 |

E-8 |Must value exist Y/N |C |non-blank |F-10/|
o —————— o ———— +

A: Question is 'ALWAYS' asked
C: Questinn is 'CONDITIONALLY' asked
Response to: For conditionally asked questions, question is triggered

by the indicated response to the question in the '?-no.’'
column.

Figure 4.2 (Continued)

62

tom +
| GENERAL QUESTIONS |
| G-x ?'s |
I |
ettt +
o - +
| BLOCK QUESTIONSI
I B-x ?'s [
e et +
e +
| FIELD QUESTIONS]|
| F-x,D-x,E-x ?s]|
o +
0
o)
n
R +
|FIELD QUESTIONS|
| F-x,D-x,E-x ?s]|
et +
- +
| BLOCK QUESTIONS|
| B-x ?'s |
fomm e +
o e +
| FIELD QUESTIONS |
o | F-x,D-x,E-x ?s]|
T +
0o o
0
o
e +

Application Definition Outline

Pigure 4.3

4-63

EMPLOYEE PERSONNETL RECORD
NUMBER : SALARY :

NAME : COMMISSION :

JOB :

DEPTNO: __ DEPT NAME :

e e e e - — — —— ———— —— ———— > = o A — — —— i T ——— — — — —— — e o —— v MmN S e Mm A S EE AE EE S S I I SIS TS =NISE
- s T - 1 1 1 T - -t 1t 1t 3 3ttt 2 b R i e

EMPLOYEE PROJECT ASSIGNMENTS
PROJNO PROJECT NAME

—-————————— i —————————— - ——————— " ————— . —————————— " — {———— - — ——— - ———————— —————

Sample "Employee®™ Screen Layout

Figure 4.4

64

Each question requires either a 'YES/NO' or literal value
response. A "Y/N" in the question text indicates that a
'YES' or 'NO' is required. All other questions require a
character or numeric value. Character values can contain any
printable character. If an incorrect response is entered,
IAG will display an error message and reask the question. A
correct response to each question |1is required before
proceeding to the next question. Each correct response will
be added to the <applname>.inp response file.

Questions will continue until the entire application 1is
defined. An application is considered complete when IAG
encounters a 'send' response to a descriptive text prompt.
The user may prematurely terminate the session by entering a
~Z (Control 2Z). This will cause a normal exit from IAG with
the <applname>.inp response file containing all the valid
responses entered prior to termination. No IAP module will
be created for incomplete applications.

When an application is executed by IAP, blocks are processed
in the order in which they were defined. This order |is
followed regardless of the order of the actual display pages.
For example, if the first block defined is on page 1, the
second on page 3, and the third on page 2, the order of page
display is 1,3,2.

For fields within a block, the cursor will advance from field
to field in the order of definition. To simplify the
operator interface, fields should be defined in their order
of display (left to right, top to bottom, etc.)

The fields within a block may be displayed on one or more
pages. Advancing to a field on another page will cause the
new page to be displayed. Unnecessary page switches may be
distracting to the operator, and will cause additional delays
in transmitting the screen images.

Many of the questions relate to ORACLE database, table and

column names and definitions. puring definition and
compilation, IAG does not access the ORACLE dictionary to
verify their existence or validate their data

characteristics. Any errors of this type will be detected by
IAP during application execution.

4-65

4.3.1 General Questions

The questions in the General (G-x) Category are asked only
once for an application. Only one application can be defined
within a single execution of IAG.

G-1: Database :
Specify the ORACLE database name to be accessed by this
application. only one database can be accessed per

application.

G-2: Sequel Workspace size :

Specify the size of the SQL workarea in 1K increments,
which is required for this application. If no value is
specified, the ORACLE default value will be used.

4.3.2 Block Questions

The block related questions are asked once for each block
definition. An application can contain one or more blocks.
Following each block definition, the fields within that block
must be defined.

B-1: Block Name :

Specify the name of the block being defined. A blank or
null response indicates that no more blocks are to be
defined, and IAG will skip to the 'Screen Layout
Questions' described in section 4.3.4.

B-2: Table Name :

The database table name referenced by this block. Only
one table may be referenced within a block. If no value
is specified, the table name will default to the block

name.

B-3: Check for uniqueness before inserting Y/N :

Specify whether you want IAP to verify, prior to
insertion, that a row does not exist in the table with
the same primary key value. Refer to section 3.3.2.3 for
a discussion on 'Primary Key Specification'.

B-4: Buffer how many records ?
Specify the maximum number of database records which can

be displayed within this block. An integer value between
1 and 22 is required. All the records must be contained

within one screen page. If only one record occurrence is
to be displayed, enter a value of 1.

B-5: Base CRT line ?
Specify the screen line number where the first line of

data for the first record of a multi-record block is to
be displayed. An integer between 1 and 22 is required.

B-6: How many physical lines per record ?

Specify the number of display lines for a single
occurrence of a record. An integer value between 1 and 7

is required.

Note: The following rules apply to the layout of a
multi-record block:

- Line 1 through 22 is available to the user.
Lines 23 and 24 are reserved for system
information.

- (Base line + (Number of Records * Lines per
Record)) <= 22

- If the prompts are displayed above the field
display area base line value of 1 is invalid.

For a detailed discussion of Multi-Record Block Layout
refer to sections 3.3.1 and 3.3.2.4.

4.3.3 PField Questions

For each application block, one or more fields may be
defined. Field questions fall into three categories:
specification, display and edit. 1In the following sections
the questions will be grouped by category. The order in
which they are discussed may vary from the order in which
they are actually asked. Additionally, questions from the

different categories may be mixed.

4.3.3.1 Pield Specification Questions

F-1: Field Name:

Specify the name of the field being defined. Any
charcter string will be accepted. Field names must be
unique within a block, but may be repeated in different
blocks. For database fields, it must be a column name
from the block's associated table. A blank or null
response indicates the end of field specification for the
current block.

F-2: Type of Field:
Specify the data type for this field. Valid data types
are:

Alpha - Only alphabetic characters A-Z are
permitted. Upper and lower case is
supported.

Char - Any printable character is permitted
Number - A number which can contain the digits
0-9, LR Numbers may be
specified in scientific notation (2.3E2 =
230).
Int - Only integer numbers are accepted.
Money - A special number format which excludes

scientific notation (ie. 3.7E2), and |is
limited to two digits to the right of the
decimal point.

Date - Only a valid date of the format mm/dd/yy
is permitted. mm must be within the range
1 through 12. dd must be within the range
implied by the specified month (including
leap years). Dates entered in this format
will be stored within the database in the
internal Julian Day Number format.

67

1 Edate - Similar to 'Date' type except the date
is entered and displayed using the

European format of dd/mm/yy. The same
validation is used and the value is stored

in Julian Day Number format.

YYMMDD - A date field which 1is entered and
displayed in the format mm/dd/yy, but
stored as a numeric value in the format
YYMMDD. This date 1is not converted to
Julian Day Number format.

Time - Allows the entry and display of a time
value in the format HH:MM:SS. The value
is converted to the number of seconds
since midnight.

F-3: Length of Field:

Specify the length of the field. An integer value between 1
and 79 is required. For database fields, this value should
be consistent with the table column length. The column value
will be truncated if its length exceeds the field length.

'‘Time', ‘'dae''edate', and 'YYMMDD' type fields must be
defined with a length of 8.

F-4: Is this field in the base table Y/N :
Specify whether this field is to be mapped to a column in the
table defined for this block. If Y, the field name must be

the same as a table column name.

F-5: Is this field part of the primary key Y/N:

Specify whether this field is part of the primary key. Refer
to section 3.3.2.3 for a discussion of primary keys. At
least one primary key field must be defined in each block.

F-6: Field to copy from :

Specify the name of a field in this or another block, whose
value will be copied into this field when the block is
initialized. Only fields which are part of the primary key
may have their value copied from another field. The format
of this response is [<blockname>.]<fieldname>. <blockname> is
required if <fieldname> is from another block and 1is not
unique within the application. See Section 3.3.2.3.1. for a
discussion on copying fields.

F-7: Default value :

Specify the value to be assigned to this field when the block
is cleared or initially entered when in 'INSERT' mode. Three
forms of default values may be specified:

- A default value may be either a character or
numeric literal. Character literals must Dbe
enclosed in single quotes (ie. 'CA'). The value must
conform to the field's data type. The correct data
format must be specified for date and time type

fields (03/31/81 , 12:13:46)

- A default value may be copied from any other field
in this of another block. The field name |is
specified as [<blockname>.]<fieldname>; <blockname>
is required only if <fieldname> is not unique within
the application.

- Date and time fields may be assigned the value of
the current date or time. "$$date$$" is used for
field types of ‘'date', ‘'edate', and 'YYMMDD';
"$Stime$s$ is used for ‘'time' field types.

Primary key fields whose value is copied from another field
may not have a default value.

F-8: Allow field to be entered Y/N :

Specify, for the insertion of a new row in the database,
whether the operator may enter a value. At least one field
in each block must be enterable.

F-9: Allow field to be updated Y/N :

Specify, for the updating of an existing database record,
whether the operator may modify the current value of this
field. I1f the field is a part of the primary key, the
reponse defaults to 'N' and the question is not asked.

F-10: SQL >

Specify the text of a SQL query to be executed when this
field is entered. The use of this query is explained in
section 3.3.2.3.2. The SQL statement is free format and must
conform to the same rules required by UFI or a Host Language
Program. The statement is not validated upon entry. The
INTO statement, if provided, will be validated when the
application is compiled. The remainder of the statement will
not be verified until application execution. A blank or null
response indicates the end of statement input. If no SOQL
statement is to be provided, enter a null response (<cr>) to

the first prompt.

F-11: Message if value not found :

Specify the message to be displayed to the operator if no
rows are returned from the above SQL statement. If the SQL
query is used to test for existence of the entered value,
this message informs the operator that the value was not
found in the order entry example, if a part number is not
found in the 'parts' table the message "Invalid Part Number"
is displayed.

4.3.3.2 Field Display Questions

D-1: Page:

Specify the page number where this field will be
displayed. An integer between 0 and 31 is required. A
null, blank, or 0 response indicates that the field
should not be displayed. All the fields within a block
do not have to be displayed on the same page.

D-2: Line:

Specify the 1line number where this field will be
displayed. For blocks with a single record display area
an integer between 1 and 22 is required. For
multi-record blocks this 1is the relative line number
within the record display area. It must be an integer
which is less than or equal to the response to question
B-6: "How many physical lines per record?".

4-71

D-3: Column:

Specify the column number where the left-most character
of this field will be displayed. An integer between 1
and 78 is required. This value must take into
consideration the prompt message extending to the left or
the field extending to the right. If either the prompt
or field extends beyond the 80 character screen size an
error will be reported. Overlaid fields will not be
detected.

D-4: Prompt:

Specify a label or prompt message to be visually
associated with this field. Enter any valid character
string.

D-5: Display prompt above field Y/N :

Specify whether the prompt identified in question D-4
should be displayed above the field display location. If
Y, the prompt is displayed on the line above the field,
starting in the same column position as the field. If N,
the prompt is displayed on the same line immediately to
the left of the field.

D-6: Display prompt once for block Y/N :

For a multi-record block, specify whether the prompt
should be repeated in every record area. If N, the field
prompt will only be displayed in the first record area.

4.3.3.3 Field Edit Questions

E-1: Is field mandatory Y/N :

For 'Insert' mode, specify whether a value must be
provided for this field. 1If Y, a value can be entered by
the operator, assigned as a result of a SQL select,
copied from another field, or assigned a default value.
For database fields, if the associated column has been
defined as 'NONULL' in the 'CREATE TABLE' statement, Y

should be specified.

E-2: Is the field fixed length Y/N:

Specify whether the number of characters entered for this
field must equal the field length. (ie. Zip Code requires
all 5 digits)

E-3: Auto jump to next field Y/N:

Specify whether cursor should automatically skip to the
next field after the maximum number of characters have
been entered.

If Y, entry of the last character triggers an automatic
'Next Field', which causes the field to be edited and the
cursor advanced to the next field.

If N, after the last character has been entered the
cursor will remain in the last postion of the field.
Once in the last position, an attempt to enter additional
characters will be rejected, and the ralarm' will sound.
The 'Next Field' key must be depressed to initiate field
editing and advancing of the cursor.

E-4: Convert Field to upper case Y/N :

Specify whether alphabetic characters should be
automatically converted to upper case. Characters will
be converted as they are keyed and displayed in upper
case. This is equivalent to placing the keyboard into
shift lock mode.

E-5: Help Message :

Sspecify a free format help message to aid operator in
entering field data. Message will be displayed on the
bottom of the screen when the operator requests the
'"Help' function. A maximum of 80 characters is

permitted.

E-6: Lowest value :

specify that the field is to be range checked by
providing the minimum value in the range. To pass the
range check the field value must be greater than or equal
to the specified value. Character literals (*Alpha' or
'Char' type) must be enclosed within single quotes (ie.
'CA'). All data types may be ranged checked. The value
for 'date', 'edate', 'yYMMDD', and 'time' field types
must be specified in the correct format (3/31/81,

12:12:46, etc.).

4-73

E-7: Highest value :

Specify the high value in the range check. The field
value must be less than or equal to the high value to be
accepted. All data types may be ranged checked. The
value for 'date', ‘'edate', 'YYMMDD', and 'time' field
types must be specified in the correct format (3/31/81,

12:12:46, etc.)

E-8: Must value exist Y/N :
Following a SQL select, a Y indicates that at least one
row must be returned as a result of the query. Using the
SQL query facility in this manner permits the
verification that the entered value is contained in a
table of all allowable values. For example, to verify
that an entered part number is valid, a query of the
parts table with the WHERE clause:

partno = <entered part number>
must return a row for that part. If Y was specified, and
a row was not returned, the entered value will be
rejected.

74

4.3.4 Screen Layout Questions

Each page of an application can be enhanced with additional
descriptive text. Following the prompt message:

Enter text for form:

A ':' will be displayed in the first column of the next line.
Following the ':', up to 79 columns of descriptive text may
be entered representing screen positions 1 through 79. The
first line of text corresponds with page 1, line 1. As each

line is entered the ':' prompt is redisplayed.

A maximum of 22 lines may be entered for each page. After
each 22 lines the page counter is automatically incremented
and the line counter reset to 1.

The line counter can be advanced to a specific 1line by
entering the command:

gline

On the next line following this command the new line counter
value is entered.

The
spage

will advance the page counter by 1 , and reset the 1line
counter to 1.

The
tend

command will terminate the entry of descriptive text and
signal IAG to compile the application. If descriptive text
is not included this command can be entered immediately
following the "Enter text for form:" message.

N
|

4.4 Using the Response File

Each time IAG is executed a new version of the <applname>.inp
response file will be created. The format is one line
listing the text of the question followed by a line listing
the entered reponse. All question text lines are preceded by
a ';'. Any line beginning with a ';' in column 1 is treated
as a comment and will be ignored. Additional comments lines
may be inserted to aid in documentation. Lines without a ';'
are treated as responses and are processed by IAG as if they
were entered from a terminal. For this reason the order and
number of responses must be exactly as originally entered.
Figure 4.5 is a listing of the response file associated with

the 'employee' application.

An application can be changed and regenerated using the
response file, eliminating the need to manually re-enter the
original responses. Simple changes, which do not alter the
order or number of responses, can be made directly within the
response file using a standard text editor.

If an error is detected while processing this modified
response file, the error message will be displayed on the
user's terminal. The terminal then becomes the source of the
input. The failing question will be asked again, and the
user will be able to enter a new response. When a valid
response is entered, questioning will continue from the
terminal. A '$sw' reply will instruct IAG to resume the
reading of responses from the response file. In this manner
the source of responses can be alternated between the

response file and user's terminal.

For example, assume that the field type for 'empno' was to be
changed from 'int' to 'number'. However, when the response
file was edited the word 'number' was misspelled. While
processing this field IAG detected this error and displayed
on the designer's terminal the "Invalid data type" error
message. The question "Type of field : " is displayed on the
terminal and IAG pauses pending a response. The designer now
correctly enters the word ‘'number', and the next question
("Length of field :") 1is issued to the terminal. The
designer enters a reply of 'ssw' to resume the use of the

response file.

75

; Database :

personnel

;Sequel workspace size ?
3

;Block name :

emp

; Table name :

emp

;Check for uniqueness before inserting Y/N :

y
;Buffer how many records ?

1

;Field name :
empnon

;Type of field :
int

;Length of field :
4

;Is this field in the base table Y/N

?Is this field part of the primary key Y/N :
?Field to copy primary key from :

;Default value :

; Page :

1

;Line :

7

;Column :

17

; Prompt :

NUMBER :

;Display prompt above field Y/N :
n

;Allow field to be entered Y/N

b4
;SQL>

;Is field fixed length ¥Y/N :

Y

;Auto jump to next field Y/N :
n

;Convert field to upper case Y/N :
n

;Help message :

Enter 4 digit employee number -
;:Lowest value :

1000

;Highest value :

8000

*"Employee® Application Response File

Figure 4.5 - Part 1 of 9

;Field name :

ename
;Type of field
alpha

;Length of field :
10

;Is this field in the base table Y/N :

a

Yy
;Is this field part of the primary key Y/N :

n
;Default value

; Page

1

;Line

8

;Column :

17

; Prompt

NAME :

;Display prompt above field Y/N

n
;Allow field to be entered Y/N :
Yy

;Allow field to be updated Y/N :
Y

;SQL>

;Is field mandatory Y/N :

Y
;Is field fixed length Y/N :

n
;Auto jump to next field Y/N :

n

;Convert field to upper case Y/N :
Yy

;Help message :
Enter employee name -
;Lowest value

;Highest value

;Field name :

job

;Type of field :

alpha

;Length of field :

9

;Is this field in the base table Y/N :

Yy

"Employee® Application Response File

Figure 4.5 - Part 2 of 9

4-78

;Is this field part of the primary key Y/N :
n
;Default value :

; Page :

1

;Line

9

;Column :

17

; Prompt

JOB :

;Display prompt above field Y/N :
n

;Allow field to be entered Y/N :

y
:Allow field to be updated Y/N

y
; SQL>

;Is field mandatory Y/N :

n :

;Is field fixed length Y/N

n

;Auto jump to next field Y/N :
n

;Convert field to upper case Y/N
b4

;Help message :

Enter employee's job title -
;Lowest value :

;Highest value

;Field name :

salary

;Type of field :

money

;Length of field :

7

;Is this field in the base table Y/N :
b4

;Is this field part of the primary key Y/N :
n

;Default value :

1000.00

; Page

1

;Line

5

*Employee® Application Response File

Figure 4.5 — Part 3 of 9

4-79

;Column :

51

; Prompt

SALARY :

;Display prompt above field Y/N :
n

;Allow field to be entered Y/N :

Y

;Allow field to be updated Y/N :
Y

: SQL>

;Is field mandatory Y/N

Yy
;Is field fixed length Y/N :

n
;Auto jump to next field Y/N :

n

;Convert field to upper case Y/N :
n

;Help message :
Enter employee salary
;Lowest value :

;Highest value :

6000.00

;Field name :

comm

;Type of field :

money

;Length of field :

2

;Is this field in the base table Y/N
Yy

;Is this field part of the primary key Y/N :
n

;Default value :

; Page :

1

:Line

8

;Column :

51

;i Prompt :

COMMISSION :

;Display prompt above field Y/N

*Employee®™ Application Response File

Figure 4.5 - Part 4 of 9

;Allow field to be entered Y/N

b4
;Allow field to be updated Y/N

Yy
;SQL>

;Is field mandatory Y/N

n

;Is field fixed length Y/N

n

;Auto jump to next field Y/N :
n

;Convert field to upper case Y/N
n

;Help message :

Enter employee's commission -
;Lowest value :

;Highest value :
3000.00

;Field name :
deptno

;Type of field
int

;Length of field :

2

;Is this field in the base table Y/N :

L<

;Is this field part of the primary key Y/N :

3

;Default value :

; Page :

1

;Line :

10

;Column :

30

; Prompt

DEPTNO :

;Display prompt above field Y/N

n
;Allow field to be entered Y/N :

*Employee” Application Response File

Figure 4.5 - Part 5 of 9

¥Allow field to be updated Y/N
Yy

: SQL>

select dname

into dname

from dept

where deptno = &deptno

;Message if value not found :
Invalid department number
;Must value exist Y/N :

b4

;Is field mandatory Y/N :
n

;Is field fixed length Y/N

Y
;Auto jump to next field Y/N

n

;Convert field to upper case Y/N :
n

;Help message :

Enter employee's department numQer
;Lowest value : :

;Highest value :

;Field name :

dname

;Type of field :
char

;Length of field :
10

;Is this field in the base table Y/N :
n
;Default value :

; Page

1

;Line :

10

;:Column :

46

;s Prompt

NAME :

;Display prompt above field Y/N :
n

;Allow field to be entered Y/N :

*"Employee” Application Response File

Figure 4.5 - Part 6 of 9

82

n
:SQL>

;Field name :

;Block name :

projects

; Table name

pe

;Check for uniqueness before inserting Y/N :

y

;Buffer how many records ?

3

;Base crt line ?

19

; How many physical lines per record ?

1
;Field name

empno

;Type of field :
int

;Length of field :
4

;Is this field in the base table Y/N

y
;Is this field part of the primary key Y/N

y

;Field to copy primary key from :
emp .empno

; Page

; SQL>

;Field name
projno

;Type of field

int

;Length of field :

3
;Is this field in the base table Y/N :

Y

;Is this field part of the primary key Y/N :
y

;Field to copy primary key from :

;Default value :

*"Employee® Application Response File

Figure 4.5 - Part 7 of 9

; Page :

1

;Line

1

;Column

22

; Prompt

PROJNO :

;Display prompt above field Y/N

4
;Display prompt once for block Y/N :

Y
;Allow field to be entered Y/N :

Y

;SQL>

select pname

into pname

from proj

where projno = &projno

;Message if value not found :
Invalid project number
;Must value exist Y/N :

b4
:Is field fixed length Y/N :

Y

;Auto jump to next field Y/N :

n

;Convert field to upper case Y/N :
n

;Help message :
Enter employee's assigned project
; Lowest value :

;Highest value

;Field name :
pname

;Type of field
char

;Length of field :

10

;Is this field in the base table Y/N :

n

"Employee®™ Application Response File

Figure 4.5 - Part 8 of 9

4-84

;Default value :

; Page :

1

;Line :

1

;Column :

36

; Prompt :

PROJECT NAME

;Display prompt above field Y/N :

Yy
;Display prompt once for block Y/N :

Y

;Allow field to be entered Y/N
n

; SQL>

;Field name :

;Block name :

o e e o e e e == +
| |
| EMPLUOYEE PERSONNEL RECORD {
|

o e e o o +
[(
|

I .
| |
| |
[|
+==+
| |
| EMPLOYEE PROJECT ASSIGNMENTS |
| |
PO R RS E S SEE i +
I [
| |
| |
| |
| |
PSSR SRR R R S St +
$end

*"Employee® Application Response File

Figure 4.5 - Part 9 of 9

4-85

Some changes will cause the order or number of questions IAG
asks to be altered. This will occur if the new response

triggers a different set of conditional questions. The
response file will no longer be synchronized with the list of
questions asked by IAG. To compensate, the user can

anticipate the new question list and insert new responses in
their proper place. If previously asked questions will no
longer be asked, their associated responses must be deleted.

Adjusting the response file may become extremely complicated.
An alternative apprmach would be to temporarily switch the
input source to the user's terminal. This way the designer
could answer each question individually, under the control of
IAG, without having to correctly anticipate the new set and
order of questions. The IAG will switch from the reponse
file to the designer's terminal when a '$sw' response is
encountered. The designer must change the original response
to a '$sw' in the first question to be answered from the
terminal. This question will then be reasked from the
terminal.

The designer must decide where to resume the use of the
response file. A convenient approach is to resume at the
beginning of the next field. In this manner all the
questions from the '$sw' to the next field will be answered
from the terminal. To accomplish this, the designer must
delete all the unwanted responses from the response file.

For example, changing the 'Page:' response from blank to a
page number will cause the associated field to be displayed.
This will trigger additional questions concerning the field's
display position, prompt and data entry attributes. In this
case the simplest approach would be to replace the 'Page :'
response with a '$sw' and delete all the remaining responses
for the field. When executing IAG the 'Page :' and
subsequent responses for this field would be entered from the
terminal. When the 'Field name :' question is asked again a
'$sw' will resume the use of the response file.

This approach may be expanded to add new fields or blocks.
For example if a new field was to be added after 'ename' the
"Field name : " response for 'job' would be changed to 'gsw'.
When the input source is switched to the terminal this
question will be reasked. The new field would then be
defined. When the "Field name : " question is asked again, a
response of 'job' is entered. A '$sw' response to the next
question, "Type of field : ", will cause the resumption of
the response file.

When making this type of modification to an application the
user should not suppress the creation of a new response file.
The new file will contain the combined responses from both
the old response file and user's terminal.

Some text editors will not permit blank lines within the
edited file. To support these editors IAG will interpret a
'//' in columns 1 and 2 as a blank line.

4.5 Generating the Sample Application

This section will examine the IAG question and answer
dialogue which defined the application shown in figure 4.4.
Two processing blocks were defined for this single screen
application. The first deals with employee information which
is inserted into or retrieved from the "EMP" table in the
sample "PERSONNEL" database. The second allows an existing
employee to be assigned to one or more projects. This block
references the "PE"™ table, which was created to allow
employees to be assigned to multiple projects. Refer to the
SQL Language examples in the ORACLE User's Guide for more

details.

The name of the application is "employee" and was generated
with the command string:

IAG employee

Figure 4.5 is a listing of the "employee.inp" response file
which was created from this terminal session. This file is
included within the ORACLE distribution system, which allows
this application to be generated using the command above.
The first question identifies the sample '‘personnel’
database. An initial value of 3K bytes is specified for the
SOL workarea. If that proves insufficient the value could be
changed within the ‘'employee.inp' response file and the
application regenerated.

The 'emp' block is the first defined and hence will be the
first processed when the application is executed. Since the
table and block names are the same, the table name could have
been omitted and the block name would have been used. Prior
to inserting a new row IAP will check that the primary key is
unique within the table. The primary key may consist of one
or more columns within the block. For a multi-column key,
the combined columns will uniquely identify a row. One
record will be buffered for this block which means that only
one record will be displayed at a time. With the block
questions completed the set of field questions will be asked
for each field within this block.

4-87

‘empno' is a four digit integer which maps to 'empno' column
in the base table, 'emp'. Fields which are not in the base
table, and do not map directly to a column will be discussed
later. 'empno' is the only column in the primary key, and
will be wused to qualify rows for update and delete
operations. Although it is the primary key, its value will
not be copied from another field in this or another block.

The display area for this field will begin in the 17th
position of the seventh line of page 1. Since the prompt is
not displayed above the field, it will be placed immediately
to the 1left. This field can be entered, but cannot be
updated. Since fields within the primary key cannot be
updated, the question "Allow field to be updated" 1is not
asked, and a response of "N" is assumed. Primary key fields
are also mandatory, hence a reply of "Y" is assumed for the
question "Is field mandatory".

No SQL statement was defined for this field. This feature
will be discussed later for the 'deptno' and 'projno' fields.
Since the field is defined as 'fixed length' all four digits
of an employee number are required for a valid entry. By
selecting 'Auto jump', an automatic 'next field' is generated
after the last character is entered. If the entry passes
validation, the cursor will be moved to the next field
position.

Converting to upper case has no meaning for numeric fields,
and either reply is ignored. The 'Help message' will be
displayed when the operator enters the 'HELP' function key.
The valid range for employee numbers is between 1000 and 8000
inclusively. This range will be checked for both data input
or update.

The 'ename' field maps to the 'ename' column in the base
table; 'EMP'. Since it 1is defined as ‘'alpha' only the
letters 'A' - 'Z' will be accepted. Responding "Y" to 'upper
case' will force lower case letters to be displayed, and
stored in upper case.,

When an application 1is executed, the processing order of
fields within a block is determined by the order the fields
were defined to IAG. In this block 'empno' will be the first
field processed, followed by 'ename', 'salary', etc. This
order is independent of the page and display position of the
field. If the next field is on a different page, the
appropriate page will be displayed automatically.

|

88

'salary' is a 'money' type field and is restricted to a
number with exactly two positions to the right of the decimal
point. Since only a 'Highest value' was specified any value
less than or equal to 6000 will be accepted. The 'comm' is
not mandatory, allowing the operator to omit this field on
insertion or update. Fields which are not entered are stored

as nulls within the database.

A SQL SELECT statement was defined for the 'deptno' field.
This statement will be executed each time the value of
‘deptno' is modified. The purpose of this feature is to

_ jinitialize other fields with a wvalue from the
database.

- display information related to the entered field.

- check the existence of the entered field in a
table of acceptable values.

In this case the ‘'deptno' SELECT will serve to verify that
the entered department number exists in the department table,
and to aid the operator in verifying, by department name,
that the desired number has been entered. After executing
the SELECT, the INTO clause causes the ‘dname' field in the
block to be initialized with the value of the 'dname' column.
This value will be immediately displayed for the operator.
The row returned is determined by the WHERE clause; the
'deptno' column must be equal to the entered value of the
field 'deptno'. The '&' signifies a literal substitution of

the field value 'deptno'.

A "Y" response to the "Must value exist" question requires
that at least one row be returned. This implies that the
entered department number must be within the 'dept' table.
If not, the value will be rejected. A special message is
defined to inform the operator that the value does not exist.
"Invalid department number"” will be displayed when a
non-existent value is entered.

The 'dname' field is not in the base table. Even though it
contains database information, that data is not mapped to or
stored in the "EMP" table. In this case it 1is used to
display the department name associated with the entered
rdeptno'. The field is used strictly for operator reference
and may not be entered. Entering data would serve no
purpose, since the entered value would only be displayed, and
not retained or used elsewhere.

4-89

A blank response to the "Field name" question (following
definition of ‘dname"') signifies the end of field
specification for the 'emp' block. The next block defined is
'projects', which refers to the 'pe' database table. In this
case up to three records may be simultaneously displayed as
illustrated in figure 4.4. A 'base' or starting screen line
must be defined for the first record display area.
Additionally, each record area may occupy one or more
physical lines. For this block, three records may be
displayed, beginning on line 19, containing one line for each
record area.

‘empno' is the first field defined. This field comprises
half of the primary key for the 'pe' table. Its value will
always be equal to the value of 'empno' in the 'emp' block
(see "Field to copy primary key from"). Furthermore, the
blank response to "Page:" designates the field as
non-display. The value can be neither entered nor updated

within this block.

Copying the primary key in this manner establishes a logical
connection between the two application blocks. Entered or
retrieved 'projects' information is implicitly associated
with the last referenced employee number within the ‘'emp'
block. The blocks could have been explicitly associated by
requiring the operator to repeat the 'empno!' within the
‘projects'’ block. However, this requires additional
keystrokes and is error prone. Making the field non-display
simplifies the display area, especially since the field is
already displayed on this screen page.

'projno' is a three digit integer which comprises the second
half of the primary key. Unlike 'empno', its value will be
entered by the operator. It will be displayed on the first
(and only) line of each record display area. The prompt
"PROJNO" will be displayed once on the line above the display
or 'scrolling' area (line 18). Prompts may be repeated
within each record display area of a multi-record block.
However, this is most useful for prompts which are displayed
to the left rather than above the field display area.

A SELECT statement has been defined for the 'projno' field.
Its purpose is the same as described for 'deptno' in the
'emp' block, requiring the operator to enter a project number
which already exists in the 'proj' table. If it does exist,
the associated project name will be displayed in the ‘pname’
field. An appropriate message will be displayed if the value
is not found. 'pname' is not in the base table and is
provided only as an aid to the operator. Data may neither be
entered nor updated in this field.

A blank response to "Field name:" terminates the field
definitions for the 'projects' block. The blank response to
"Block name:" terminates block specification. The input
which follows is a line by line specification of the text
used to enhance the screen page. This text is combined with
the field defined prompts to create the display screen
layout. The text must be supplied a page at a time in the
order of the physical page number. The 'gpage' command is
used to indicate the end of one page and the beginning of the
next. 'g%line' commands establish positioning to a specific
line on the currently defined page. The 'send’ terminates
the text input process and signals IAG to compile the

application.

Compilation errors will be reported at the designer's
terminal. Since IAG does not access the database dictionary
during this process, errors relating to invalid ‘'column' or
‘table' specifications will not be detected. These errors
will be detected and reported during IAP execution. Once
compiled, an application may be immediately executed.
Section 3 of the "IAF Terminal Operator's Guide" discusses
the operation of this 'employee' application.

ADVANCED APPLICATION

TECHNTIQUES

5.1 Introduction

This section will present some addtional techniques for using
IAF. These techniques include consecutive sequence number
genertion, setting up field defaults to eliminate setting up
field defaults to elminate redundant data entry, using views,
and a more sophisticated use of SQL within an application.

5.2 Assigning Sequence Numbers

In many applications it is necessary to uniquely identify new
entries by assigning a consecutive sequence number. Upon
entry the new record would be assigned a value one greater
than the current/maximum value. An example is the 'orderno’
in the sample order entry application.

Within an IAF application, sequence numbers can be
automatically retrieved. This is accomplished with a SQL
SELECT statement which selects the maximum value of the
sequence field plus 1. The SELECT statement in the case of

the order entry application is:

SELECT max (orderno)+1
INTO orderno
FROM order

This statement should be defined within any mandatory field.
when a value is established for that field, either Dby
operator entry, default value, or initialized via an INTO
statement, this SQL statement will be executed and the
'orderno' initialized. Using a field which is not mandatory
will not insure that a va?ue will be assigned prior to
insert.

The sequence field may optionally be displayed if the
operator needs the power to override the derived value. In
most cases the sequence field is a part of the IAF primary

key and thereby not updatable.

An assigned value is not stored within the database until the
record 1is inserted. Thus, it is possible that another
operator may be assigned the same number. To minimize the
interval between the time the value is computed and stored,
the field used to trigger the SELECT should be at the end of
the block. This assumes that the operator will perform the
insert shortly after entering the triggering field.
Duplicate record insertions can be prevented by including the
sequence number in the primary key and requesting a check for
uniqueness prior to executing the insert.

5.3 Operator Defined Defaults

In many applications the operator will repetitively process a
block to insert multiple records. For this type of data
entry application it is convenient to assign default values.
Literal default values can be assigned when the application
is defined, but they remain static over the life of the
application. It may be more convenient to permit each
operator to define his own set of defaults depending on his
talk data entry tasks.

Operator defined defaults can be achieved by creating an
additional block expressly for default specification. The
fields defined in this block would be referenced in the
"Default :" responses of fields in other blocks. This form
of default is described in Sections 3 and 4.

when the application is initially executed, the operator
would first process this form to enter the desired defaults.
When other blocks are cleared or initialized in "INSERT"
mode, the referenced default values would be copied. The
values could be changed by the operator at any time by
reprocessing this default block. The defaults then remain in
effect until the application is terminated.

This approach can be extended to permit the operator to
retain these defaults across executions of the application.
This is accomplished by creating a "default" table within the
application's database. Each operator would have their own
set of default records. Instead of entering the values
within the "defaults" block, the appropriate record could be
retrieved. The fields within the "defaults" block would map
to columns within this table.

The defaults block could also be initialized from some other
database table. In this case the "default" fields would not
be from the base table. At least one field from the base
table must be defined, and at least one of these base table
fields must be designated as part of the primary key. These
fields are necessary to fulfill an IAF requirement, but will
have no effect on the referenced table since this block would
not be used for database modification. A dummy table could

be defined for this purpose.

5.4 Using Views

As discussed in earlier sections an IAF application allows
fields on a screen to be mapped directly to the columns of a
database table. There is a one to one correspondence between
a field and a single column. The association is implicit,
requiring that the field and column names be the same. This
precludes the possibility that a screen field could map to
the average salary, maximum order number, or computation of
(price x qty). However, there may be a need to have
application blocks which report this summary information.

An effective way to provide this type of report is through
SQL defined views. A view may be defined which simply
projects a set of columns from a qualified set of rows for a
single table. Although IAF could map directly to the table
in this case, it cannot restrict the set of rows nor project
a derived column (an arithmetic expression consisting of one
or more columns - ie. (gty*price)). A view defined column
name would be associated with each item in the select list.

4-94

An application block could reference this view as if it were
a table. The fields would refer to the view defined columns.
ORACLE restricts the use of views to retrieval operations.
Therefore, if an operator attempted to insert, update, or
delete a record within this block an ORACLE error would be
returned. since there is no mechanism to disable these
functions by application block, the designer should define
these fields so they can be neither entered nor updated.
(Note that IAF requires at least one field in a block to be
enterable.) Any view may be referenced by an IAF block.
This includes views of joined tables or views which use the
built-in functions to create virtual columns (ex: avg(sal) or

max(gty)) .

In some applications it may be desirable to have a summary
report which assembles data from multiple tables. Since
multiple tables are involved a different block would have to
be generated to retrieve data fromeach table. The operator
would have to process each block separately to assemble the
desired information. A simpler approach is to create a view
which joins the referenced tables. A single block is defined
which could present all the data in a single operation.
Again, this block could be used for retrieval purposes only.

5.5 Using the SELECT Statement

Any field may have an associated SQL SELECT statement. The
statement is executed each time the field is modified. A
field can be modified as the result of an operator entry,
assignment of a default value, record retrieval, copied
primary key value, or the object of another field's SELECT
statement. Recall that, an INTO clause can direct the output
of the first row returned to other fields within the block.
on each execution, only the first row will be processed, with
the remaining rows ignored.

The main purpose of this feature is to test for the existence
of a field's value within a table of acceptable values, and
to initialize other fields within the block. The second use
offers a great deal of application flexibility. The full
power of the SQL select can be utilized. No restrictions are
placed on the content of this statement which may include
arithmetic expressions, multi-table joins, nested selects,
and GROUP BY, ORDER BY, and CONNECT BY clauses. A block
field value may be substituted within the SELECT anywhere a
character or numeric literal can be used.

5.5.1 Cross Pield Totaling

For certain applications it is desirable to display a field
whose value is computed from other fields. In the order
entry example, the 'cost' of an item |is equal to the
'quantity' times the 'price'. Although ‘cost' would not
normally be stored in the database (it could be derived from
the 'quantity' and ‘'price' columns) it may be helpful for the
nperator to see this value as the data is entered.

The present version of IAF does not explicitly support the
equating of a field value to the result of an arithmetic
expression of other fields within the block. However, the
same result can be achieved with an arithmetic expression in
the select list of a SQL query. In this case the expression
includes any fields within the block; database columns are
not involved. The values of the fields are substituted by
the IAP prior to statement execution. SQL will evaluate the
expression and pass the result back to the IAP. The IAP
places this result into the field specified on the INTO
statement.

For example, assume the following fields are part of the
‘orderitem' block:

U
oo
-
Q
m
i
O
O
0
3

PARTNO QTY X

A2B451 - 20 2.50 50.00

If the operator entered the 'partno', 'qty', and '‘price', the
'‘cost' will be computed and displayed. If the operator
changes either the 'qty' or 'price' a new value of ‘cost' is
automatically computed. This value will be recomputed each
time either the 'gty' or ‘'price' is modified (including
record retrieval). Note that if any field in the expression
has not been assigned a value, or the value is null, the
value of the expression is null. For example, if the annual
salary (annsal = sal*l2+comm) was computed using the "EMP"
table, and either 'sal' or ‘'comm' were null, a value for
‘annsal' would not be displayed.

The technique employed is to specify the following SQL
statement within the 'qty' and ‘'price' field definitions:

SQL>select >y*&price
SQL>into cost
SQL>from orderitem

The select list contains the expression to be computed.
'sqty' and '&price' are variables whose associated field
values will be substituted prior to statement execution. The
INTO clause causes the result of the expression as returned
by SQL to be stored and displayed in the 'cost' field. Any
table name within the database may be specified in the FROM
clause. Although a single row is processed by the query, no
column data is returned. A WHERE clause is unnecessary.

Since the cost is not stored within the database record, the
tcost' field is defined as "not from the base table". If the
computed value was to be retained the field could be mapped
tn a database column. 1In either case the field should not be

entered into.

5.5.2 Cross Field Totaling - Manual Request

In the previous discussion, the computation was automatically
triggered by modifying any field within the expression. This
was accomplished by defining the SQL statement in every field
participating in the computation. In this manner the SQL
statement is triggered for execution each time any of the
associated fields are modified. Omitting the statement from
any field would inhibit the recompilation when that field was
changed. This omission may be desirable if another SQL query
must be triggered by that field. If omitted from all the
associated fields another triggering mechanism is required.

As an alternative, the computational SQL statement may be
defined with the field which is receiving the result. 1In the
order example, the same statement as described in 5.5.1 would
be defined within the 'cost' field. When the 'cost’ field is
modified by the operator, the statement will be triggered,
and the newly computed value displayed. With this approach,
the operator must manually request recompilation. The field
may be modified by entering at least one valid character.

5.5.3 Combining Detail and Summary Information

A SQL query can be used to add summary information to the
detail field entries within a block. Referring back to the
order application, the operator may want to review the order
following the entry of the individual 1line items. This
'review' block would contain the summary of the iteims ordered
in addition to the general order information. A sample

layout might be:

" ORDER SUMMARY SCREEN "

ORDERNO: _5674 DATE: 04/01/81
CUSTNO : 87653 CUST NAME: Leisure Time Products

NO. ITEMS ORDERED : 6 SUB TOTAL :$ 349.52
SALES TAX : 27.50

TOTAL :$ 377.02

The orderno, date, customer number and customer name fields
map to the base table 'order'. 'orderno' is the primary key
and is copied from the 'order' block. Number of items
ordered and sub total are computed by the following SQL

query:

SQL>select count(*),sum(qgty*price)
SQL>into no items,subtotal
SQL>from orderitem

SQL>where orderno = &orderno

This statement may be included with any of the four base
table fields. The result is that the summary of all the
items associated with the order is computed from the
'orderitem' table and displayed in the ‘'review' block.
Within this block, only the base table fields could be
modified. The other fields should not be entered into.

4-98

The 'no items' and 'subtotal' fields contain the count of
items, and the sum of the cost of each item. The 'salestax'
and 'total' fields are computed with the following SQL query
defined with the 'subtotal' field :

SQL>select &taxrate*&subtotal,(l+&taxrate)*&subtota1
SQL>into salestax,total
SQL>from order

The 'taxrate' field was derived from the 'state' field in the
‘order' block and is stored in the 'order' row.

5.5.4 Summary Reports

In section 5.3 a technique was discussed for creating a
summary block containing fields from multiple tables. That
approach was to create a view which Jjoined all the
participating tables. Each column in the view is mapped to a
field in the block.

An alternative approach is to use SQL queries to assemble the
desired data. The block would contain both ‘'database' fields
from the base table, and ‘control' fields to receive the data
from the other tables. After retrieving the base table
record, the retrieved field values would trigger the defined
SQL statements. Each field could have an associated query.
These SELECTs would retrieve the data for the 'control’
fields. Each of the 'control' fields could have its own SQL
statement which would also be triggered.

APPENDIX A

CRT INTERFACE UTILITY
Introduction

This section describes the IAF utility allowing a user to
specify a non-standard crt for use with IAF. This utility,
called CRT, compiles information from a wuser database,
containing crt-descriptive parameters. The compiled
information 1is then available to the IAP processor as

needed.

A common limitation of programs which use the advanced
features of a CRT is that the program can only run on the
CRT for which it was originally intended. The reason for
this is that for every maker of CRT devices, there is a
different way of invoking these features. However, most
manufacturers have chosen a fairly compatible scheme for
controlling CRTs. This compatibility amongst CRTs lets IAP
view all CRTs as being equivalent functionally and uses
variables (which are read by IAP at program startup) to
characterize their differences. These variables or
parameters are stored in source form in a user-provided
database. After a CRT's parameters have been entered into
the database, the CRT utility compiles this source
description into a file which IAP can directly access.

4-100

Required CRT Features

The following characteristics are required for IAF to
interfac? to a particular CRT:

(1) Transmits each character as its entered
(2) Use the ASCII character set

Besides the above characteristics, the CRT must be able to
perform certain control functions. Most CRTs support these
functions, however not all of them will employ a compatible
method of invoking them. A CRT must support the following
features to be compatible:

(1) Move cursor left one position

(2) Move cursor right one position

(3) Absolute cursor positioning to column and row
(4) Clear to end of screen

In addition, the following restrictions apply to (3):

(3a) Row and column numbers must be able to be
expressed either as ASCII strings (ie. Row 23
would be expressed as "23") or as a single
character whose ASCII value is equal to the
number plus an offset (ie. If the offset was
31 then row 23 would be the ASCII character
Il6ll) .

(3b) Row and column numbers must begin with 0 or 1
and increase monotonically.

If a given CRT meets these requirements then it should be
able to be supported by IAF. A possible exception to this
might be that the CRT has certain timing characteristics
that limit how fast data/command strings can be sent. IAF
assumes that the CRT can handle continous transmission of
data/commands up to the baud rate of the terminal. Since
most terminals meet this requirement for the required
functions, this should not generally be a problem.

4-101

optional Peatures Utilized By IAF

Besides the required functions, IAF can take advantage of
some specialized functions that are provided by more
sophisticated CRTs. These include:

(5) Underlining (or equivalent attribute)
(6) Reverse video (or equivalent attribute)
(7) Split screen scrolling

The features of (5) and (6) are attributes of the characters
being displayed and as such make the following assumptions:

a) A given attribute may be turned on and will
stay on until it is explicitly turned off.
That is, all characters transmitted after that
will have the attributes assigned until
another attribute sequence is detected.

b) Turning attributes on or off does not move the
cursor.
c) Turning an attribute on or off does not "mark"

a certain portion of the display area as
having that attribute (ie. the PE OWL has this
feature).

The feature (7) refers to is the ability to define a subset
of the lines on the CRT which can act as an independent
scrolling region from the rest of the lines on the CRT. For
example if lines 1 through 7 are defined as a scrolling
region, then these lines can be scrolled up or down without
affecting lines 8 through 24. Top and bottom line numbers
must meet the same requirements as (3a) and (3b).

CRT Definition - Preparation

Defining a CRT can be as simple as entering data into a
form. A form is provided for this purpose and can be used
as soon as at least one CRT definition exists. Before
defining a CRT the following steps must have been performed.
Normally these steps would have been carrried out as part of
the ORACLE installation procedure.

4-102

(1)

(2)

Create a database called CRT (If space is a
premium, any existing database can be used, in
which case this step may be skipped). This is
where the CRT definitions will reside. This
database may be created with DBF as follows:

DBF C CRT CRT.DBS 1K

A 1k database should be able to hold quite a
few CRT definitions. The database may of
course be a secure database so that only
certain users may define or look at CRT
definitions, as in the following example:

DBF C CRT CRT.DBS 1K JON/DOE

Initialize the database. This consists of
creating the tables and inserting data into
them. This can easily be accomplished by
logging on to UFI, as follows:

SQL CRT

substituting the particular database name for
CRT if not using the CRT database. The SQL
statements for initializing the database are
stored on a command file provided with the
ORACLE system. The following command will
cause UFI to process that command file:

@CRT.SQL

The last thing the command file will do is
select out the names of CRTs that have been
pre-loaded into the database. I1f the CRT in
question is among these, the CRT may be
directly compiled as described in the
"Compiling CRT Descriptions” section of this
document. Exit from UFI by typing:

$EXIT

Parameters Used to Define a CRT

Once the CRT database has been created and initialized, the
process of CRT definition may begin. The parameters for
defining a CRT are usually available in the CRT manual.

4-103

values will be required (possibly NULL) for the following
parameters. These parameters are stored in a table called
crt. To enter these parameters into the database the crt
form provided with ORACLE may be used, or SQL INSERT
statements may be used to bootstrap IAP for the first CRT.
Some CRT definitions will already exist in the CRT database
as a result of running the CRT.SQL command file. If the
terminal is already defined, the crt form may be used to add
additional CRT definitions. To find out what CRT
definitions exist and a description of them, type SELECT
NAME FROM CRT while in UFI.

PARAMETER TYPE DESCRIPTION

NAME CHAR(20) The name by which the CRT will be
referenced. It should conform to
the naming conventions for files in
the operating system.

LINES NUMBER The number of lines of text that
will fit on one screen. This value

is 24 for most CRTs.

COLUMNS NUMBER The number of characters that will
fit on on line of text. This is
generally 80 or 132 for most
terminals.

MSGL NUMBER The line to display help messages
and diagnostics on. This is
normally 1line 23. It can be no
greater than LINES.

MODL NUMBER The line to display mode and other
status information. This is
normally 1line 24. It can be no
greater than LINES.

4-104

BASE

OFFSET

CLEARSCREEN

BACKSPACE

NUMBER

NUMBER

CHAR(20)

CHAR(20)

Should be 1 or 0 depending on how
the CRT numbers its lines. For
example a 24 line CRT may number
its lines from 0 to 23 or
alternativly 1 to 24. Generally
numbering starts with 1.

If row and column values are
represented as single characters
(for instance when postioning the
cursor) then an offset value must
be supplied. This number is
usually 31 (decimal) and when added
to a row or column value determines
the character used to represent
that value to the CRT. Leave the
value NULL if the terminal
represents these values as ASCII
strings. See the section on CRT
Requirements for further details
concerning offsets.

The escape sequence to clear the
screen or clear to end of screen.
This is usually a 2 or 3 character
sequence beginning with the escape
character (033 octal). Later it
will be shown how these sequences
can be easily represented in the
database.

The escape sequence (or control
character) that will move the
cursor left one position. This is
a non-destructive backspace, that
is it should not erase any
characters. Control H works on
most CRTs.

4-105

FORESPACE CHAR(20) The escape sequence for moving the
cursor right one position. This
must also be a non-destructive
sequence. A space character is not
an acceptable FORESPACE sequence

GOTOXY CHAR(20) The model escape sequence for
postioning to an absolute column

and row on the screen. The word
model is used because the actual
escape sequence has the actual row
and column values put into the
sequence when its used as opposed
to the model esacpe sequence which
has placeholders for the row and
column values. More on that later.

TSET CHAR(20) A set of escape sequences used to
configure the terminal into a
particular mode. This sequence is
executed once at program startup
prior to any other sequnces.

TRSET CHAR(20) This sequence is executed prior to
leaving the program to reconfigure
the terminal back to a starting
state. The definition of CRTs does
not provide for storing the initial
state of the terminal and restoring
it to that starting state.

BOLDON CHAR(20) This sequence turns the inverse
video attribute on. Any other
attribute could be substitued for
reverse video as well (such as
highlighting).

4-106

UNDERON

ALLON

ATTOFF

WINDOW

SCRUP

CHAR(20)

CHAR(20)

CHAR(20)

CHAR(20)

CHAR(20)

This sequence turns the underline
attribute on. Like the former, any
other attribute could be
substituted for underlining.

This sequnce turns both underlining
and reverse video attributes on
simultaneously.

This sequence turns all attributes
off.

This model sequence creates a new
scrolling region which is a subset
of the lines on the display. It is
a model sequence for the same
reasons as GOTOXY is. The actual

top and bottom lines are
substituted at the time the window
is created. The model sequence

supplies placeholders for the
actual values.

This sequence causes a window to
scroll up one line causing the top
line to disappear and a new line to
appear on the bottom line of the
window.

4-107

Control Sequences for IAP

Besides defining the parameters of a CRT, control sequences
for invoking IAP functions (ie. NEXTFIELD, PREVFIELD, etc.)
must also be defined. These control sequences map a key or
keys to a particular IAP function. When that key(s) 1is
pressed IAP will recognize it as a control sequence and
execute the appropriate function. To avoid ambiguity,
control sequences must begin with a non-printing character.
More than one sequence can be defined to invoke a particular
function and not all functions have to be defined allowing a
subset of functions to be available.

Some CRTs will provide a group of keys (called function
keys) which when pressed will send out an escape character
followed by one or more characters. Defining these keys as
control sequences makes invoking functions easier for the
IAP operator. If the CRT does not provide these keys,
single control characters make good alternatives. Its also
helpful if certain common functions such as NEXTFIELD are
mapped to appropriate keys like TAB or RETURN. The
BACKSPACE function should be defined to be the same as the
operating system's backspace key for consistency.

Since control sequences must use non-printing characters, it
would be helpful if these sequences could be entered as
printing sequences so that later it would be possible to see
what was entered. For that reason the following conventions

are used when defining CRT control parameters and control
sequences:

\ooo Where ooo is a 1 to 3 digit octal number
representing some ASCII character.

\e Represents the escape character (\033).

\\ Represents the \ character.

4-108

These sequences will Dbe translated to their defined
representations prior to being sent to the CRT.
Additionally there are similar conventions for representing
the placeholders for inserting the x and y screen
coordinates used in GOTOXY and the top and bottom lines used
in the WINDOW sequence. These formal parameters tell IAP
where to insert the actual values when it wants to execute
that function. The following conventions are used:

\x The x coordinate for GOTOXY. This corresponds
to the column to postion to.

\y The y coordinate for GOTOXY. This corresponds
to the line to position to

\t The top line in the WINDOW function.

\b The bottom line in the WINDOW function.

Function to Control Sequence Mapping

pefining the function to control sequence mapping consists
of entering rows into the esc table in the CRT database.
This may be done by INSERT statements when bootstrapping IAP
or as part of the form crt. The esc table has the following

structure:

NAME CHAR(10) The CRT the mapping 1is to Dbe
associated with.

FUNC CHAR(2) A one or two character abbreviation
of the IAP function name.

ESCSEQ CHAR(20) The control sequence used to invoke
the function.

COMMENTS CHAR(20) A description of what key(s) to
press to cause ESCSEQ to be
generated. This description will
be used to drive the IAP function
HELPKEYS which describes to the
user how to invoke IAP functions.

4-109

The allowable values FUNC may take on are contained in the
table functions. To list the allowable values while in SQL
type SELECT * FROM FUNCTIONS. They are listed here for

convienence:

NF Next Field

NR Next Record

NB Next Block

PF Previous Field

PR Previous Record

PB Previous Block

CF Clear to end of Field

CR Clear Record

CB Clear Block

I Insert record

o] Query record

U Update record

D Delete record

X Exit IAP

DC Delete Character (backspace)

H Help

DA Display field Attributes

R Redisplay screen

MR Move cursor Right

ML Move cursor Left

CM Change character Mode (Replace or Insert)

FM change Functional Mode (Insert or
Query/Update)

CA Clear All

DK Display function Keys

SB Scroll forward one Block

P Print form

4-110

Compiling CRT Descriptions

At this point it is assumed that a CRT description has been
entered into the CRT database as outlined above. Now it is
necessary to compile the CRT description into a format that
IAP can read. The output of CRT is a system library file
which is read by IAP at startup. The CRT description is
compiled by executing the CRT utility as follows:

CRT crtname [user/id]
or
CRT crtname database [user/id] -u

The first case applies when the crt information has been
stored on the crt database and the second case applies when
a user database has been used. The user/id parameter is
optional depending on whether 1its a secure database.
Crtname is the name entered into the NAME column of the crt
table. If no diagnostics come out, then the description was
compiled successfully. An output file called crtname.crt
will be placed in the system library.

After a description has been compiled successfully, IAP may
use that CRT as follows:

IAP formname crtname
or
IAP formname

The first format is used to specify a particular CRT. The
second format is used to specify the default CRT (explained

below).

It may be desired to have a particular CRT act as the
default. This can be accomplished copying the crt file into
a new file called default.crt (which should reside in the
system library). In this case the crtname parameter may be
omitted when invoking IAP and that CRT will be the default.

