ORACLE

HOST LANGUAGE INTERFACE

Oracle Programmer's Guide - Version 2.3

Copyright (c) April 1981
By Relational Software Incorporated
All rights reserved. Printed in U.S.A.

ORACLE

HOST LANGUAGE INTERFACE

TABLE OF CONTENTS

Introductinn
Program CALL Summary
Compiler Language Interface

LOGON CALL
OPEN CALL
SQL CALL
DESCRIBE CALL
NAME CALL
DEFINE CALL
BIND CALL
EXECUTE CALL
FETCH CALL
CLOSE CALL
LOGOFF CALL

SQL Substitution Vvariables
Data Types

Data Type Descriptions

Data Conversions

Internal Numeric Format
CURSOR Data Area

Program Interface Data Areas
FORTRAN Example Program

"Cc" Example Program

COBOL Example Program
ASSEMBLY Language Interface
Linking Instructions for RSX/IAS
System Resources for PDP-11 Programs
Linking Instructions for VAX-11

ORACLE

HOST LANGUAGE INTERFACE

INTRODUCTION

SQL is designed to be used as a stand-alone terminal language
for interactive users, and as a data sublanguage embedded in
a host programming language. All SQL query, data
manipulation, data definition, and data control facilities
are available from both the interactive and data sublanguage

interface.

ORACLE interfaces to FORTRAN, COBOL, PL/1, "C" and other high
level host programming languages by means of program calls.
ORACLE interfaces to assembly language via macro
instructions.

A program establishes communication with ORACLE by issuing
the LOGON call. Communication takes place via the Logon Data
Area (LDA) defined within the user program. A user program
issues one and only one LOGON to ORACLE.

A program opens a database and creates a "cursor" by issuing
an OPEN call. A cursor is the name of a data area which is
used to identify and control an active SQL statement. The
Cursor data area is defined within the user program. ORACLE
permits user programs to have multiple active SQL statements.
This is accomplished by a single program issuing multiple
OPEN's to establish multiple cursors.

The SQL call is used to associate a SQL statement with a
cursor. In the case of a query, the SQL call defines a set
of rows to be retrieved and logically positions the cursor
just before the first row.

Subsequent calls related to the same SQL statement reference
the same cursor.

The following sections assume that the reader is familiar
with SQL, section 3.12 of the "ORACLE Introduction", and at

least one programming language.

ORACLE

HOST LANGUAGE INTERFACE

PROGRAM CALL SUMMARY

There are eleven different ORACLE calls or macros that may be
used to access the database.

The LOGON call establishes communication between a program
and ORACLE.

The OPEN call connects a program to a database and creates a
cursor.

The SQL call is used to pass a SQL statement to ORACLE.

The DESCRIBE call is used to dynamically determine the number
and data types of fields to be retrieved during a query

operation.

The NAME call is used to retrieve table and column names.

The DEFINE call identifies to ORACLE the location of data
field buffers in the user program.

The BIND call allows programs to dynamically substitute
variables into SQL statements.

The EXECUTE call causes ORACLE to process the SQL statement.

The FETCH call is used to retrieve rows, one at a time,
during a program query operation.

The CLOSE call closes the database and disconnects the cursor
from ORACLE.

The LOGOFF call disconnects the user program from ORACLE.

ORACLE

COMPILER LANGUAGE INTERFACE

The following general

ORACLE:

literals

variable-length
fields

length field formats

CODING RULES

rules apply to user programs calling

may be used within the CALL parameter
list if they are permitted by the
compiler. Note that the use of a
literal must generate a pointer to
the literal as a result of the CALL;
the PDP-11 compilers always generate
pointers to 1literals, but the VAX
compilers may generate a pointer to a
character string descriptor which
cannot be used by the ORACLE Host
Language Interface. An example 1is
the VAX FORTRAN —compiler which
generates pointers to descriptors for
all references to character data
types. In order to circumvent the
FORTRAN calling defaults, use the
"$REF" function to force a call by
reference.

variable length parameters are passed
to ORACLE with an accompanying length
field in the form: parameter,length.

Length fields are binary numbers
(FORTRAN INTEGER; COBOL PICTURE S9999
COMP; etc.) of the standard word size
for the computer on which ORACLE is
running (32 bits for the VAX, 16 bits
for the PDP-11). The 1length field
may be omitted if the wvariable
parameter is terminated by a binary
zero.

missing parameters

If a length field or other optional
parameter is omitted from a call
parameter 1list, the user may code
comma comma (,,) to indicate the
absence of the parameter. For
example: "paraml,lenl,param2,len2 vs.
paraml, ,param2,,". In some languages
("c" for example) the comma comma
notation is not allowed to indicate a
missing parameter in a call parameter
list. If comma comma notation is not
permitted, the user may code a minus
one (-1) to indicated the missing
parameter. For example:
(paraml,-1,param2,-1).

The LOGON Call

CALL OLOGON (lda[,areacount])

The LOGON call establishes communication between ORACLE and a
user program.

Communication takes place via the Logon Data Area (LDA)
defined within the user program. The LOGON call connects the
LDA to ORACLE. A program logs on to ORACLE one and only one
time. A program has one and only one LDA.

The LDA is a 64 byte data area defined within the user
program. The first two bytes of the LDA contains a return
code indicating the result of the LOGON. A zero return code
indicates a successful LOGON. Error return codes are listed
in the "Mescages and Return Codes" section of this manual.

lda specifies the name of the 64 byte
Logon Data Area defined within the

user program.

areacount specifies an integer number
indicating the number of ORACLE SQL
statement work areas (SWA's) to be
concurrently maintained in main
storage. This optional parameter is
used only if the user program is
opening multiple cursors and and the
user does not want ORACLE to swap
SWA's. (See the section on "Program
Interface Data Areas." at the end of
this manual.) Areacount should be
equal to or less than the maximum
number of cursors the program will
open. The default value for

areacount is one.

LOGON Examples:
FORTRAN

Log on to ORACLE using a Logon Data Area named LDAREA.

CALL OLOGON (LDAREA)

COBOL

Log on to ORACLE using a Logon Data Area named LDAREA and a
integer named AREACOUNT.

CALL "OLOGON" USING LDAREA,AREACOUNT.

MACRO-11 ASSEMBLY LANGUAGE

Log on to ORACLE specifying the address of the LDA in
register 2.

CCALL OLOGON,R2

The OPEN Call

CALL OOPEN (cursor,lda,dbn,dbnlen[,areasize][,uid,uidlen])

The OPEN call establishes a cursor to operate on a specific
database.

A cursor is a data area defined within the user program. The
OPEN connects the cursor to ORACLE. The cursor name is used
to identify an active SQL statement within the user program.

Each cursor may control only one SQL statement at a time.
The same cursor may be reused to control another SQL
statement after the first statement's operation has been

completed.

A single user program can have multiple SQL statements active
at the same time. This is accomplished by issuing multiple
OPEN's to establish multiple cursors within the program.
These OPEN's can be to the same or different databases.

The cursor data area contains status information on an active
SQL operation. All subsequent ORACLE calls referencing a SQL
statement reference it by cursor name. The first two bytes
of the cursor contain a return code indicating the result of
the OPEN. A zero return code indicates a successful OPEN.
Error return codes are listed in the "Messages and Return

Codes" section of this manual.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area 1is connected to
ORACLE by the OPEN call. Each cursor
defines an active SQL statement
within the program.

lda specifies the name of the Logon Data
Area specified in the LOGON call.

dbn specifies the name of the ORACLE
database as defined in the Database

File (DBF) utility.

dbnlen specifies a binary integer indicating
the length of the database name. If
the database name was specified as a
literal, this parameter may be

omitted.

areasize

uid

uidlen

specifies a binary integer indicating
the size of the ORACLE SQL Work Area
(SWA) in 1increments of 1K bytes.
This optional parameter is used only
if the user wants a work area other
than the default size of 3K bytes.
The SWA must be large enough to
contain the compiled SQL statement
plus one row of data of the table or
view being processed. ORACLE SQL
work areas can vary in size from 1 to
l6. See the section on "Program
Interface Data Areas" at the end of
this chapter. Note that if multiple
cursors of different sizes are to be
opened, the one with the largest SWA
size must be opened first.

specifies the user identification and
password as defined by either the
Database File (DBF) utility or the
SOL "DEFINE USER" function.

specifies a binary integer indicating
the length of the user identification
and password. If they were specified
as a literal, this parameter may be

omitted.

OPEN Examples:

FORTRAN

Open the PERSONNEL database and establish the cursor CURSI1.
The name of the Logon Data Area (LDA) is LDAREA. Specify the
database name and user id as literals and take the default 3K

SQL work area size.

CALL OOPEN(CURSI,LDAREA,'PERSONNEL',,,'SCOTT/TIGER')

Open the personnel database and establish the cursor CURS2.
The name of the program's LDA 1is LDAREA. Specify the
database name and the length of the database name as program
variables DBN and DBL. Specify a 5K SQL work area. The user
identification and password are not specified, i.e., the
database is not secure.

CALL OOPEN(CURS2,LDAREA,DBN,DBL,5)

COBOL

Open the personnel database and establish a cursor CURSL1.
The name of the Logon Data Area is LDAREA, the database name
is contained in a variable named DBN, its length 1is in
DBNLEN, the area size is in a variable named AREASIZE, the
user identification and password are contained in a variable
named UID, and its length is in UIDL.

CALL "OOPEN" USING CURS1,LDAREA,DBN,DBNLEN,AREASIZE,UID,UIDL.

MACRO-11 ASSEMBLY LANGUAGE

Open the personnel database and pass the address of the
cursor to ORACLE 1in register Zero. The address of the

program's LDA is in register 2. Specify the database name in
program variable DBN and pass the length of the database name
as a literal. Specify a 1K SQL work area. The user
identification and password are not specified, 1i.e., the
database is not secure.

OOPEN RO,R2,BN,#9,#1

The SQL Call

CALL OSQL (cursor,sqlstatement,sqllen)

The SQL call passes a SQL statement to ORACLE, and associates
that SQL statement with an open cursor. Subsequent calls
reference the SQL statement by cursor name.

The SQL call may contain any valid SQL query, data
manipulation, data definition or data control statement.
ORACLE parses the statement and selects an optimal access
path to perform the requested function, however, the

operation is not executed at this time.

SQL syntax error codes will be returned in the cursor
RETURN-CODE area along with a pointer to the text in error.
See the parse errors section in Messages and Return Codes for
a complete list of syntax errors.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
open SQL statement within the user
program. The SQL call attaches a SQL
statement to the cursor. A cursor
may be serially reused by subsequent
SQL calls within a user program, or
the program may define multiple
concurrent cursors.

sqlstatement specifies any valid SQL query, data
manipulation, data definition, or
data control statement. The

statement may contain substitution
variables anywhere a constant is
permitted. Substitution wvariables
are identified by ©preceding the
variable name with an ampersand, i.e.

- &EMPNO. These substitution variables

then may be referenced symbolically
in a BIND call.

sqllen specifies a binary integer containing
the length of the SQL statement. If
the SQL statement was specified as a
literal this parameter may be
omitted.

SQL Examples:
FORTRAN

Pass a SQL query statement to ORACLE using the cursor CURS1.
Specify the SQL statement as a literal.

CALL OSQL(CURS1,'SELECT ENAME,SAL FROM EMP WHERE DEPTNO =
&DNO; ')

Pass a SQL statement to ORACLE using the cursor CURS2.
Specify the SQL statement as a program variable named QUERY1
with the length of the SQL statement specified as as literal.
CALL OSQL(CURS2,QUERY1,28)

COBOL
Pass the SQL statement contained in a variable named SQLSTM

with length contained in SQLSTML to ORACLE. Use the cursor
named CURS1.

CALL "OSQL" using CURS1,SQLSTM,SQLSTML) .

MACRO-11 ASSEMBLY LANGUAGE
Pass a SQL statement to ORACLE using the cursor CURSI.

Register 1 points to the 1length of the SQL statement.
Register 1 plus 2 points to the the SQL statement itself.

CCALL OSQL,#CURS1,2(R1l),(R1)

12

The DESCRIBE Call

CALL ODSRBN (cursor,position[,dbsize][,dbtype][,fsize])

The DESCRIBE call returns internal data type and size
information for a field or expression listed in the SELECT
clause of a query statement.

DESCRIBE operates positionally, one field at a time,
referencing each field in the SELECT clause as if each were

numbered consecutively, left to right, beginning with 1.

DESCRIBE can be used after a SQL, EXECUTE, or FETCH call to
determine the maximum size and internal data type (dbsize &
dbtype) of fields to be returned as the result of a query.
If DESCRIBE is used after a FETCH Call, the actual size of
the field just fetched (fsize) may be returned in addition to

dbsize and dbtype.

If the user specifies a position number greater than the
number of fields in the SELECT 1list, DESCRIBE returns an
end-of-file indicator in the RETURN-CODE of the cursor data
area. This allows programs to dynamically determine the
number of fields to be returned as the result of a query.
This is necessary if the program does not know in advance how
many fields there are in the SELECT list, as in the case of

SELECT *.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. DESCRIBE uses the cursor
name to reference a specific SQL
query statement that had been passed
to ORACLE in a prior SQL call. The
RETURN CODE area of the cursor
indicates success (code of 0) or
failure (non-zero) of the DESCRIBE
call. All error return codes are
listed in the "Messages and Return
Codes" section of this manual.

position

dbsize

dbtype

specifies the position of a field or
expression listed in the SELECT
clause of a SQL query statement.
Fields and expressions in a SELECT
list are separated by commas. Each
field or expression is then
referenced positionally as if the
fields were numbered left to right
consecutively beginning with 1. The
position number is specified as a
binary integer. If the user
specifies a position number greater
than the number of fields in the
SELECT list, DESCRIBE returns an
end-of-file indicator (+4) in the
RETURN-CODE of the cursor data area.

returns a binary integer specifing
the maximum size of the field. If
the field is defined as CHAR in the
CREATE or EXPAND TABLE, the 1length
returned is the max imum length
specified for the field 1in that
particular CREATE or EXPAND TABLE.
Fields defined as NUMBER 1in the
CREATE TABLE, and fields that contain
the results of expressions always
return a size of 8.

returns a binary integer that
indicates the internal data type of
the field as it is stored in the
database. Fields defined as CHAR in
the CREATE or EXPAND TABLE are stored
as variable length ASCII strings and
return a value of 1. Fields defined
as NUMBER are stored in ORACLE
extended precision floating-point and
return a value of 2. Fields that
contain = expression results also
return a value of 2.

fsize returns a binary integer that
indicates the actual size of the data
field returned by the 1last FETCH
operation. The value returned is the
actual length of the field as stored
in the database before it is moved to
the user buffer where padding or
truncation may take place. ORACLE

suppresses leading zeros on numeric
data and trailing blanks on character
data before storing the fields in the
database. This field is valid only
if the DESCRIBE is issued after a
FETCH call.

DESCRIBE Examples:

FORTRAN

Request a description of the first data field in the SELECT
list in the SQL query statement referenced by the cursor
CURS1. Specify the position as a literal. Return the
maximum size of the field and the internal data type into the

program variables SIZE and TYPE.

CALL ODSRBN(CURS1,1,SIZE,TYPE)

COBOL

Request a description of the data field in the SELECT list in
the SQL statement referenced by cursor CURS1 whose number is
given in variable POS.

CALL "ODSRBN" USING CURS1,POS,SIZE,TYPE,ACTSIZE.

MACRO-11 ASSEMBLY LANGUAGE

Describe the second data field in a SELECT list controlled by
the cursor pointed to by register 0. Return the data fields
maximum size and internal data type into the program
variables SIZE and TYPE.

ODSRBN RO,#2,#SIZE,#TYPE

The NAME Call

CALL ONAME (cursor,position,tbuf,tbufl,cbuf,cbufl)

The NAME call is used to retrieve the names of the tables and
columns used in a SELECT clause of a SQL program query. NAME
operates positionally one field at a time, referencing each
field or expression in a SELECT clause as if each were
numbered sequentially from left to right beginning with 1.

NAME may be used after a SQL call to determine the table
name, column name, or expression string of fields to be
returned. If the requested field is an expression (e.g.,
SAL+COMM), then no table name can be returned, and the column
name is the literal expression text.

If the user specifies a position number greater than the
number of fields in the SELECT 1list, NAME returns an
end-of-file indicator in the RETURN-CODE of the cursor data
area. Programs can use the end-of-file status to dynamically
determine the names of fields to be returned as the result of
a query for which the number of fields is unknown, as in the
case of SELECT *.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The NAME call references
the cursor name to associate a data
field buffer with a specific SQL
statement.

position specifies the position of a field or
expression in the SELECT clause of a
SQL query statement. Fields are
separated by commas and numbered left
to right consecutively beginning with
1. The position number is specified
as a binary integer. NAME uses the
position number to relate buffers to
fields in the SELECT list.

tbuf

tbufl

cbuf

cbufl

specifies the location of the data
field buffer within the user program
where the name of the table of which
the field is a column 1is to be
stored. I1f tbuf is zero, then the
table name will not be stored.

specifies the location of a binary
integer which indicates the length of
tbuf. If the table name to be stored
is longer than tbufl, then the table
name will be truncated; if it is
shorter, then tbufl will point to a
binary integer which is the length of
the table name stored in tbuf. If
tbufl is zero, then the table name
will not be stored.

specifies the location of the data
field buffer within the user program
where the name of the column or
expression is to be stored. If cbuf
is zero, then the column name will
not be stored.

specifies the location of a binary
integer which indicates the length of
cbuf. If the column name to be
stored is longer than cbufl, then the
column name will be truncated; if it
is shorter, then cbufl will point to
a binary integer which is the length
of the column name stored in cbuf.
If cbufl is zero, then the column
name will not be stored.

NAME Examples:
FORTRAN

Retrieve the table and column names for the second field in
the SELECT list associated with the cursor CURSI.

CALL ONAME(CURS1,2,TABLE,TABLEL,COL,COLL)

COBOL

Retrieve the table and column names in the SELECT list
defined by CURS4 which has its position number specified by a
variable named SELPOS.

CALL "ONAME" USING CURS4,SELPOS,TABLE,TABLEL,COL,COLL.

MACRO-11 ASSEMBLY LANGUAGE

Retrieve the table and column names for the second field in
the SELECT list associated with cursor CURS2.

CCALL ONAME,#CURS2,#2,#TABLE,#TABLEL,#COL,#COLL

The DEFINE Call

CALL ODFINN (cursor,pos,buffer,bufl[,ftype][,rcode][,fdig])

The DEFINE call is used to define one output buffer for each
field in a SELECT list within a SQL program query.

DEFINE specifies the location and size of a data field buffer
in the user program. Define also passes the external data
type of the field as defined by the user program, and
optionally specifies a field return code. DEFINE defines one
data field buffer at a time. Buffers are defined after the

SQL call and prior to the FETCH call.

SELECT buffers are always defined positionally. Fields
within the SELECT list are referenced as if they were
numbered consecutively, left to right, beginning with 1.
During a FETCH, ORACLE will convert each field from internal
to the specified external data type and then store the fields
in the defined buffers.

ORACLE provides return code information at the row level,
"cursor" return code, and optionally at the field 1level,
"field” return code. During each FETCH, ORACLE establishes a
return code for each field processed. This code indicates

either successful completion (return code = 0) or an
exceptional condition such as: null field fetched, field

truncated, etc. The field return code is stored in the rcode
variable for each defined field. At the completion of each
FETCH, the last non-zero "field" return code encountered is

placed in the "cursor" return code.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The DEFINE call references
the cursor name to associate a data
field buffer with a specific 5SQL
statement.

6-19

pos specifies the position of a field or
expression in the SELECT clause of a
SQL query statement. Fields are
separated by commas and numbered left
to right consecutively beginning with
1. The position number is specified
as a binary integer. DEFINE uses the
position number to relate buffers to
fields in the SELECT list.

buffer specifies the location of the data
field buffer within the user program.

bufl specifies the length of the buffer
being defined. The buffer length 1is

specified as a binary integer.

ftype is a binary integer that specifies
the data type that the field is to be
converted to before it is moved to
the wuser Dbuffer. If the ftype
parameter is omitted no conversion
takes place. A list of external data
types and type codes is contained in
the section on data types in this
manual.

rcode specifies a two byte binary field
defined in the user's program into
which ORACLE will place a field
return code. Field return codes are
filled in after a FETCH operation.

fdig The number of fractional digits (to
the right of the decimal point) to be
returned for datatype 7 (COBOL
implied decimal). fdig is required
for datatype 7, and is ignored for
all others.

DEFINE Examples:

FORTRAN

Define a data field buffer for the second field in the SELECT
list associated with the cursor CURS1. The data field is to
be fetched into a program variable named DEPT which is
defined as INTEGER*2. ORACLE is to convert the field to
integer external data type (3). At the completion of each
fetch ORACLE will place a return code into the program
variable RC2.

CALL ODFINN(CURS1,2,DEPT,2,3,RC2)

COBOL

Define a buffer for the field in the SELECT list defined by
CURS4 which has its position number specified by a variable
named SELPOS. The buffer is EMPNO with its 1length in
variable EMPNOL. The data type is specified in the variable
CBL and has FRAC fractional digits. The picture for EMPNO is
S99999V99 USAGE IS DISPLAY.

MOVE 8 TO EMPNOL. MOVE 2 TO FRAC. CALL "ODFINN" USING
CURS4,SELPOS,EMPNO,EMPNOL,CBL, FRAC.

MACRO-11 ASSEMBLY LANGUAGE

Define a data field buffer for the second field in the SELECT
list associated with cursor CURS2. The data field buffer in
the user program is named DNAME and has a length of 20,
specified as a literal. The field is to be returned to the
program in ASCII format (1). After each fetch, ORACLE will
place a return code for the data field into the program

variable ERR1l.

CCALL ODFINN,#CURS2,#2,NAME,#20.,#1,#ERRI1

The BIND Call

CALL OBIND (cursor,sqlvar,sqlvl,progvar,progvl[,ftype])

CALL OBINDN (cursor,sqlvarnum,progvar,progvl[,ftype])

The BIND call is used to dynamically modify a SQL statement
after it has been passed to ORACLE in a SQL call. The
statement may then be executed, modified again, re-executed,

etc.

The BIND call specifies that a program value is to be
assigned to a SQL substitution variable within a SQL
statement.

BIND and BINDN are exactly the same except in the way they
reference SQL substitution variables. BINDN references SQL
substitution wvariables numerically. BIND references SQL
substitution variables symbolically by name. The name of the
variable to be bound must be specified in upper case.

At the time of the BIND, ORACLE converts the program variable
from external to internal format, and then moves the data
value into the SQL statement. BIND is used after the SQL
call and prior to the EXECUTE call. The completion status of
the BIND is indicated in the RETURN CODE area of the cursor.
All return codes are specified in the "Messages and Return

Codes" section of this manual.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. BIND uses the cursor name
to reference a specific SQL
statement.

sqlvar specifies the character string name
of a substitution variable within the
SQL statement, 1i.e. WHERE EMPNO =

&EMPLOYEE. BIND moves the program
variable value into the SQL
substitution variable &EMPLOYEE.

sqlvl

sqlvarnum

progvar

progvl

ftype

specifies a binary integer indicating
the length of the character string
specified for the sqglvar parameter.
For example, &EMPLOYEE has a length
of 9. If the substitution variable
was specified as a literal this
parameter may be omitted.

specifies a binary integer that
references a SQL substitution
variable within the SQL referenced by
the cursor. For example, if
sgqlvarnum contains the value 2, it
references a SQL substitution
variable defined as &2.

specifies the name of a variable
defined within the user program. The
value within the program variable is
substituted into the SQL statement at
the time of the BIND.

specifies a binary integer containing
the length of the program variable.
A length of zero indicates a null
value is to be bound to the progvar
parameter.

specifies a binary integer that
indicates the data type of the
program variable as it is defined
within the user progranm. ORACLE
converts the program variable from
external to internal format before it
is bound to the SQL statement. A
list of external data types and type
codes 1is <contained 1in a separate
section of this manual.

BIND Examples:

FORTRAN

Bind the value contained in the program variable DEPT to the
SQL substitution variable &DNO. DEPT is defined in the user

program as INTEGER*4.
CALL OBIND(CURS1,'&DNO',,DEPT,4,3)

Bind the value contained in the program variables EMPNO and
DEPT to the SQL substitution variables &l and &2

CALL OSQL(CURS1,'SELECT EMPNO FROM EMP
1 WHERE EMPNO=&1 AND DEPTNO=&2')

CALL OBINDN(CURS1,1,EMPNO,4,3)

CALL OBINDN(CURS1,2,DEPT,4,3)

COBOL

Bind the value contained in program variable EMPNO to the SQL
substitution variable which 1is specified in variable
EMPNO-NAME which has a length specified in EMPNO-N-L.

CALL "OBIND" USING CURS1,EMPNO-NAME
, EMPNO-N-L, EMPNO, EMPNO-L,INT4.

MACRO-11 ASSEMBLY LANGUAGE

Bind the value contained in program variable DEPT to the SQL
substitution variable pointed to by ADRDNO. ADRDNO 1is a
program variable containing the 4 byte ASCII string &DNO.
The data type of the value contained in DEPT is integer with

a length of 4.

CCALL OBIND,RO,#ADRDNO,#4,EPT,#4,#3

EXECUTE Call

CALL OEXEC (cursor)

The EXECUTE call causes the SQL statement currently
associated with the cursor to be processed.

If the SQL statement is a data manipulation, data definition,
or data control statement, the entire SQL function is
performed at this time; the RETURN CODE is set and a count of
the rows processed by the statement is placed in ROW COUNT
field of the cursor data area. If the SQL statement is a
query, the user program must explicitly request each row of
the result using the FETCH call.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The EXECUTE call executes
the SQL statement attached to the

cursor.

EXECUTE Examples:

FORTRAN

Execute the SQL statement which was passed to ORACLE using
CURS1.

CALL OEXEC(CURS1)

COBOL

Execute the SQL statement which was passed to
CURS1.

CALL "OEXEC" USING CURSL.
MACRO-11 ASSEMBLY LANGUAGE
Execute the SQL statement which was passed to

the cursor pointed to by register zero.

CCALL OEXEC,RO

N
}

25

ORACLE using

ORACLE using

The FETCH Call

CALL OFETCH (cursor)

The FETCH call returns rows of a query result to the user
program, one row at a time. Each field of the query 1is
placed into a buffer identified by a previously executed
DEFINE call. Fields that are requested by the user program
in character string format are left justified and padded with
trailing blanks. Character strings that are too large for
the field buffer are truncated and the ORACLE field return

code is set to +3.

If null values are encountered in any field of the fetch, the
ORACLE field return code for that field is set to +2 and the
user buffer remains unchanged. To determine which specific
fields are null or have been truncated, the user program must
have specified field return codes in the DEFINE buffer calls,
or a DESCRIBE call may be issued. If multiple non-zero field
return codes are encountered in a single FETCH, the cursor
return code will contain the last non-zero field return code.

After the last row of the query result has been returned to
the user program, the next fetch will return an end-of-file
return code of +4. After each FETCH the cursor row count is
updated. When end-of-file has been reached, the row count
will contain the total number of rows found by the query.

cursor specifies the name of a 64 byte data
area within the user program. The
cursor data area contains status
information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. The cursor maintains
position on a set of rows that
satisfy a query as those rows are
retrieved, one at a time by the FETCH
call.

FETCH Examples:
FORTRAN

Fetch a row for the SELECT statement passed to ORACLE using
CURS1. CALL OFETCH(CURS2)

COBOL

Fetch a row for the SELECT statement passed to ORACLE using
CURS1.

CALL "OFETCH" USING CURSI.
MACRO-11 ASSEMBLY LANGUAGE

Fetch a row for the SELECT statement passed to ORACLE using
CURS2.

CCALL OFETCH,#CURS2

The CLOSE Call

CALL OCLOSE (cursor)

The CLOSE call disconnects a cursor from ORACLE and frees all
resources obtained by the OPEN, SQL, and EXECUTE functions
using this cursor. 1If the CLOSE fails, the RETURN CODE area
of the cursor contains the status indicator. All of the
return codes are listed in the "Messages and Return Codes"

section of this manual.

cursor specifies the name of a 64 byte data
area within the wuser program. The
cursor data area contains status

information on an active SQL
operation. Each cursor defines an
active SQL statement within the user
program. CLOSE disconnects the

cursor from ORACLE.

CLOSE Examples:
FORTRAN

Close the cursor CURS1.

CALL OCLOSE(CURS1)

COBOL

Close the cursor CURS1.

CALL "OCLOSE" USING CURS1.

MACRO-11 ASSEMBLY LANGUAGE

Close the cursor pointed to by register zero.

OCLOSE RO

The LOGOFF Call

CALL OLOGOF (lda)

The LOGOFF call disconnects a program from ORACLE and frees

all ORACLE resources owned by this program.
fails, the reason is indicated

If the LOGOFF
in the first two bytes of the

Logon Data Area (LDA). A complete list of return codes is
given in the "Messages and Return Codes" section of this

manual.

lda specifies the name of the Logon Data
Area specified in the LOGON call.

LOGOFF Examples:

FORTRAN

Log off from ORACLE.

CALL OLOGOF (LDAREA)

COBOL

Log off from ORACLE

CALL "OLOGOF" USING LDAREA.

MACRO-11 ASSEMBLY LANGUAGE

Log off from ORACLE.

CCALL OLOGOF,R2

ORACLE

HOST LANGUAGE INTERFACE

SQL SUBSTITUTION VARIABLES

when SQL is wused within a host programming language,
substitution variables may be used within the SQL statement.
SQL substitution variables allow user programs to dynamically
modify SQL statements, and then execute those modified

statements.

SQL substitution variables are identified by an ampersand.
Substitution variables may be wused anywhere in a SQL
statement that a constant may be used. For example, 1in
FORTRAN:

CALL O0SQL (CUR1l,'SELECT ENAME,SAL
1 FROM EMP
2 WHERE DEPTNO = &DEPT;')

The BIND call is used to substitute values into a SQL
substitution variable.

CALL OBIND (CUR1,'s&DEPT',5,DEPT,2,3)

DEPT is a variable defined in the user program as a 2 byte
fixed point number.

SOL substitution variables may also be used to BIND values in
INSERT and SET statements.

CALL 0OSQL (CUR2,'INSERT INTO DEPT:
1<&A,&B,&C ,NULL>;")

Null values may be inserted into the database by specifying
NULL in the INSERT list or by binding a value with a zero
length to a SQL substitution variable.

CALL OBIND (CUR2,&C,2,L0C,0,1)

ORACLE

HOST LANGUAGE INTERFACE
DATA TYPES

ORACLE performs data conversions for most data types provided
by the supported languages. On retrieval (SELECT)
operations, ORACLE will convert from the internal format of
the data as stored in the database, to an external format as
defined by the user program. On storage (INSERT and UPDATE)
operations, ORACLE will convert from external to 1internal

data types.

The wuser specifies the external data type for SELECT
operations with the DEFINE call. The user specifies external
data types for INSERT and UPDATE operations with the BIND

call.

Internally, ORACLE stores characters in ASCII and numbers in
a variable length extended precision (maximum 22 bytes)

floating point format.

If the user does not want ORACLE to do any conversion on
numeric data, the data may be defined as a character string
for both the internal and external data type.

The following is a list of the external data types supported
by ORACLE:

DATA TYPE CODE FORTRAN COBOL
varying-length 01 LOGICAL*1 PIC X...X
character string

ORACLE internal 02 N/A N/A

numeric

8 bit fixed 03 LOGICAL*1 N/A

point

16 Bit fixed 03 INTEGER*2 PIC S9(4)

point COMP

32 Bit fixed 03 INTEGER*4 PIC S9(9)

point COMP

32 Bit floating 04 REAL*4 N/A

point

64 Bit floating 04 REAL*8 N/A

point

Null terminated 05 LOGICAL*1 PIC X...X

string

Raw data 06 LOGICAL*1 PIC X...X

COBOL implied 07 N/A PIC S9V9

decimal

The use

ORACLE

HOST LANGUAGE INTERFACE

DATA TYPE DESCRIPTIONS

each of the ORACLE external data types is

described below.

DATA TYPE

01

02

DESCRIPTION

The varying length character string format is a
string of ASCII characters whose length is
determined by a length field. Trailing blank
characters are discarded on input. ORACLE pads
the string with trailing blanks on output. If
the length specification is missing on input,
the string length is determined by scanning the
string until a null character (a zero byte) 1is
encountered. The length is required on output.
An all blank field, or one whose length Iis
specified as zero on input is treated as a NULL
by ORACLE if the internal datatype is CHAR; if
the internal type is NUMBER, then an all blank
field is converted to zero. A zero length
output length specification 1is invalid. When
the ORACLE internal data type is NUMBER, input
character strings are converted to internal
numeric format until an invalid numeric
character is encountered, e.g., '1234.45bcd' is
converted to 1234.45, and the 'bcd' is ignored
without any error indication. Qutput to an
ASCII buffer from an internal numeric datatype
to a character string which contains the ascii
character representation of the internal
number. The field width determines the
precision. The number will be converted to
scientific notation if required by the field
size., e.g., if the number is 123456789 and the
field width is 6, the output string will be
'1.2E08'.

See the section on internal numeric format.

03

04

05

06

The integer number format 1is used to process
numbers which have no fractional parts. The
integer number is a signed binary number of
one, two, or four bytes. The significance
order is determined by the host language being
used. The length specification is required for
input and output. If the number being output
from ORACLE is not integral, the fractional
part is discarded. Integer numbers may be used
only with internal numeric columns.

The floating number format is used to process
numbers which have fractional parts, or which
exceed the capacity of integer number format.
The number is represented using the computer's
floating point format with a length of either 4
or 8 bytes (REAL*4 or REAL*8). The length
specification is required for input and output.
Since the internal numeric format is decimal
based, some precision may be lost during the
conversion from the computer's binary floating
point format to and from ORACLE's decimal
format.

The null terminated string format is exactly
like the varying length character string
format, except that the string 1is always
terminated by one byte of =zero (the NULL
character). on input, the string length is
ignored and the string scanned for the null.
Oon output, the null is placed after the last
character returned. If the string exceeds the
field length specified, the string is truncated
and the last character position of the buffer
contains the null. Trailing blanks are
discarded on input. A zero length string (null
in the first position or an all blank field) is
treated as NULL by ORACLE.

The raw data format is used for binary data.
The contents of the buffer are not interpreted
in any way by ORACLE for either input or
output. The length is required for input and
output. On output, only the number of
characters stored in the database are returned;
the remainder of the output buffer 1is not
modified. The number of characters actually
refurned may be determined using the DESCRIBE
call.

07

The COBOL implied decimal data type is used to
return non-integral numbers from ORACLE to a
COBOL data type which is suitable for
calculation. The COBOL data area must be a
signed numeric display field with an implied
decimal point. The number of digits to the
right of the decimal point is specified with
the DEFINE call. The value returned may be
used as is for COBOL calculations, or may be
moved to a computational field prior to
calculations. The number will never be
converted to scientific notation. If the
number to be returned loses significant digits
during the conversion, ORACLE fills the buffer
with "*" characters.

ORACLE

HOST LANGUAGE INTERFACE

DATA CONVERSIONS

The following table specifies the data conversions supported
by ORACLE.

e +

\ SYSTEM FORMAT| TO ORACLE |FROM ORACLE|
Frmmm—————— + |—————————— $om————— - |
USER FORMAT \ | CHAR |NUMBR|CHAR | NUMBR/|
o +-———- +————- +-———- t—— - |
|ASCII | YES | YES | YES | YES |
|- - +-————- e t-———- !
| INTERNAL NUMERIC | YES | YES | YES | YES |
| = +——— +———— e - !
| 8 BIT FIXED PT. | - | YES | - | YES [
| ———— +-———— e R - I
|16 BIT FIXED PT. | - | YES | - | YES |
|—mmmm e R it e R $om—— |
|32 BIT FIXED PT. | - | YES | - | YES |
[—m——me e +-——— +-———- +o———- 4o |
|32 BIT FLOATING | - | YES | - | YES |
[== +————— +————— tm——— t———— |
|64 BIT FLOATING | - | YES | - | YES |
o - +-————- R +————- |
|NULL TERM. STR. | YES | YES | YES | YES |
Fomm +——=—= +-———- +————- $—-——- +
|RAW DATA | YES | YES | YES | YES |
ettty +
| COBOL IMPLIED | NO | NO | NO | YES*|
o +

* NOTE: The COBOL 'number' datatype must have a
picture of the following form:
PICTURE S9(N)V9(N) USAGE DISPLAY SIGN
LEADING SEPARATE.

ORACLE

HOST LANGUAGE INTERFACE

INTERNAL NUMERIC FORMAT

Database fields defined as NUMBER in the CREATE TABLE are
stored in the database in ORACLE's variable length extended

precision floating point format.

ORACLE floating point numbers vary in length and occupy from
1 byte to 22 bytes of real storage. The ORACLE internal
numeric format is depicted below:

The number consists of a sign bit (0 is negative, 1 Iis
positive), a 7 bit exponent and up to 21 bytes of significant

digits.

The exponent represents the number of digit positions to
shift the radix point (which is assumed to be to the left of
the leftmost digit). The exponent is expressed in excess 64
format, so that an exponent of 64 indicates a 0 shift, 63 a
shift to the left of one digit, 65 a shift to the right of
one digit, and so on.

Each digit is stored in one byte and is a base 100 digit
represented as a binary number from 0 to 99. Each shift of
the radix point changes the magnitude of the number by a
power of 100. Trailing zero digits are discarded. Negative
numbers are indicated by a sign bit of zero and the digits
are stored as the 100's complement of the number.

The ORACLE numeric format can represent numbers ranging from
10 ** -128 to (10 ** 128) - 1 with up to 42 digits of

precision.

ORACLE

HOST LANGUAGE INTERFACE

CURSOR DATA AREA

The cursor is a 64 byte data area defined within a user
program. A cursor is identified to ORACLE in an OPEN call.
The cursor data area contains status information on an active
SQL operation. Each cursor defines an active SQL statement
within a user program. All ORACLE calls that reference a SQL
statement reference it by cursor name. The cursor format is

depicted below:

PRSI +
| 0 | 2 |
| RETURN CODE | FUNCTION TYPE |
IS e

| 4 I
| ROWS PROCESSED COUNT |
| m——mmmm e m e m————————— oo s |
| 8 j11 {10 |
| PARSE ERROR OFFSET | FILLER | FUNC CODE |
| __

12

ORACLE SYSYEM

PARAMETER AREA

RETURN CODE contains a two byte binary number
that indicates the completion code
for the specified operation. Zero
indicates a successful result. A
positive return code indicates a
successful result with an exceptional
condition. A negative return code
indicates an error was encountered in
attempting to perform the specified
operation. See ORACLE Messages and
Codes for a complete list of return
codes.

FUNCTION CODE

ROWS PROCESSED COUNT

PARSE ERROR OFFSET

contains an operation code indicating
the type of ORACLE function
requested. The function codes are:

02 - SQL
04 - EXECUTE
06 - BIND

08 - DEFINE
10 - DESCRIBE
12 - FETCH

14 - OPEN
16 - CLOSE
18 - BINBN

contains a four byte binary number
indicating the count of the number of

rows processed by a SQL operation.

The count will contain the number of
rows inserted, updated, or deleted by
a data manipulation statement, or the
number of rows fetched in a query
statement. This field is valid only
after an EXECUTE or FETCH operation.

contains a two byte binary number
indicating the offset in characters
into the SQL text where the parse
error occured.

ORACLE

HOST PROGRAM INTERFACE

PROGRAM INTERFACE DATA AREAS

ORACLE allows a single program to have multiple cursors open
at the same time.

To optimize program performance, it is wuseful to have an
understanding of the communication between ORACLE and a user

program.

The following is a diagram of a user program named UPDT3 with
two open cursors.

USER PROGRAM ORACLE

fomm e — + fom +
UPDT3		COMMUNICATION REGION			
[4-mm————— 4 Fomm———— +				
e —————— +			upDT3		unused

| | LOGON LDA | i || LCA | | LCA P
I oo + l Il +==+ +=—+] | |1
I ! | t1c1l fc2l| | |]
| +==————- + o ————— + | | l4+=——+ +—=+1] | bl
| |OPEN C1| |OPEN C2] | | +—=—m————- + - + |
I ——————— + $+—————— + | I========================|
l I ! |
| SELECT UPDATE | I |
| FROM SET | | ORACTLE l
| WHERE WHERE ! I |
| | | |
| | I I
o + o +

When program UPDT3 issues the LOGON call, ORACLE allocates an
Logon Control Area (LCA) for UPDT3 in the ORACLE
Communication Region. ORACLE connects this LCA to the Logon
Data Area (LDA) defined within UPDT3. ORACLE will allocate
one and only one LCA for each terminal and program currently
logged on to ORACLE.

wWwhen program UPDT3 issues an OPEN call, ORACLE allocates a
SQL Work Area (SWA) for UPDT3 in the ORACLE Communica;ion
Region. ORACLE connects the SWA to the Cursor (Cl) defined

within the UPDT3.

When program UPDT3 1issues a second OPEN call, ORACLE
allocates a second SWA and connects it to UPDT3's second
cursor (C2). ORACLE will allocate one SWA for every open

cursor.

If a program opens multiple cursors causing ORACLE to
allocate multiple SWA's to that program, Some of that
program's SWA's may be swapped to disk. However, ORACLE will
maintain at least one SWA in main memory for each program or
terminal logged on to ORACLE.

The default number of SWA's to be maintained in memory for a
given program is one, unless the user specifies a different
number in the optional "areacount" parameter in the LOGON
call.

The default size of each SWA is 3K bytes. The user can
override the default by specifying the "areasize" parameter
of the OPEN call. The SWA must be large enough to contain
the compiled SQL statement plus one row of data of the table
or view being processed.

SAMPL1 -
COMPILER)
SAMPL2 -
COMPILER)
SAMPL3 -
COMPILER)

ARAA Kk hkkhhhkhkhrhhkhkkkkhkhhhhkkkkhhhhhkkhhkd

FORTRAN

*
*
*
EXAMPLE PROGRAMS *
*
*

*
*
*
*
*
*

Ahkhkhkhkhkhhhhhhhkhkrkhhkhhhhhhhhkhkhhhkhhkhhkhkkd

Table of Contents

INSERTS ROWS WITH NO DATA CHECKING (FOR VAX
INSERTS ROWS WITH SOME DATA CHECKING (FOR PDP 11

INSERTS ROWS AND INSURES DATA VALIDITY (FOR PDP 11

QOO0 000000000000000000

[oNeXe!

OO0

PNO NP

PROGRAM SAMPL1

SAMPL1 IS WRITTEN FOR THE VAX FORTRAN COMPILERS. NOTE
THE $REF IS USED WHENEVER A LITERAL STRING IS PASSED

TO ORACLE.

SAMPLl1 IS A SIMPLE EXAMPLE PROGRAM WHICH ADDS NEW EMPLOYEES
ROWS TO THE PERSONNEL DATA BASE. VERY LITTLE CHECKING IS
DONE TO INSURE THE INTEGRITY OF THE DATA BASE. THE PROGRAM
QUERIES THE USER (VIA DEVICE 5) FOR DATA AS FOLLOWS:

Enter employee number:
Enter employee name
Enter employee job
Enter employee salary:
Enter employee dept

THE NEW EMPLOYEE ROW IS INSERTED AND THE DEPARTMENT
TABLE IS UPDATED TO INCREASE THE EMPLOYEE COUNT. IF
THE EMPLOYEE NUMBER IS ENTERED AS '0', THEN THE
PROGRAM TERMINATES.

IMPLICIT INTEGER*2 (A-2Z)
LOGICAL*1 ENAME(10) ,JOB(9)
INTEGER*2 LDA(32),CUR1(32),CUR2(32)

LOGON TO ORACLE

CALL OLOGON(LDA)
IF (LDA(1l).NE.O) GO TO 10000

OPEN TWO CURSORS FOR THE PERSONNEL DATA BASE

CALL OOPEN(CUR1,LDA,
$REF (' PERSONNEL') ,, ,$REF('QA/TEST"'))
IF (CUR1(l).NE.0O) GO TO 10000

CALL OOPEN(CUR2,LDA,
$REF('PERSONNEL'),, ,$REF('QA/TEST'))
IF (CUR2(1).NE.O) GO TO 10000

PASS THE SQL STATEMENTS TO ORACLE

CALL OSQL(CUR1,

1 $REF('INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO)
2 <&EMPNO, §ENAME, &JOB, &SAL,&DEPTNO>;"'))

IF (CUR1(1l).NE.O) GO TO 10000

QOO0 n

C

1
2

NOTE THAT THE 'NULLF' FUNCTION FORCES THE EMPCNT TO ZERO
IF IT IS NULL

CALL OSQL(CUR2,
$REF('UPDATE DEPT SET EMPCNT=NULLF(EMPCNT,0)+1
WHERE DEPTNO=&DEPTNO;'))

IF (CUR2(1l).NE.O) GO TO 10000

C READ THE USER'S INPUT FROM DEVICE 5 (NORMALLY, THE TERMINAL)

C
10
100

110

120
130
140
150
153
155

158
160

OO0 0n

WRITE(5,100)

FORMAT('SEnter employee number: ')
READ (5,llO,END=5000,ERR=lO)EMPNO
FORMAT (I5)

IF (EMPNO.EQ.0) GO TO 5000

WRITE (5,120)

FORMAT('S$Enter employee name : ')
READ (5,130)ENAME

FORMAT(10Al)

WRITE (5,140)

FORMAT('$Enter employee job : ")
READ (5,150)J0B

FORMAT(9A1)

WRITE (5,155)

FORMAT('$Enter employee salary: ')
READ (5,110,ERR=153)SAL

WRITE (5,160)

FORMAT('$Enter employee dept : ')
READ (5,110,ERR=158)DEPT

BIND ALL SQL SUBSTITUTION VARIABLE VALUES.
IF ANY ERRORS OCCUR, PRINT AN ERROR MESSAGE,
BUT CONTINUE.

CALL OBIND(CUR1,$%REF('&EMPNO'),,EMPNO,2,3)
IF (CUR1(l).NE.O) GO TO 1000

CALL OBIND(CUR1,$REF('&ENAME'),,ENAME,10,1)
IF (CUR1(1l).NE.O) GO TO 1000

CALL OBIND(CUR1,$REF('&JOB'),,JOB,9,1)

IF (CUR1(1l).NE.O) GO TO 1000

CALL OBIND(CUR1,%REF('&SAL'),,SAL,2,3)

IF (CUR1(1l).NE.O) GO TO 1000

CALL OBIND(CUR1,%REF('&DEPTNO'),,DEPT,2,3)
IF (CUR1(1l).NE.O) GO TO 1000

CALL OBIND(CUR2,%$REF('&DEPTNO'),,DEPT,2,3)
IF (CUR2(1l).NE.O0) GO TO 1000

C
C EXECUTE THE SQL STATEMENTS: CUR1 INSERTS A ROW INTO THE
C 'EMP' TABLE.
C
CALL OEXEC(CUR1)
IF (CUR1(1l).NE.0O) GO TO 1000
Cc
C ...CUR2 UPDATES THE 'EMPCNT' COLUMN OF THE 'DEPT' TABLE.
C
CALL OEXEC(CUR2)
IF (CUR2(1).NE.O) GO TO 1000
GO TO 10
1000 CALL ERRRPT(LDA,CUR1,CUR2)
GO TO 10 ’
C
C CLOSE THE TWO CURSORS
C

5000 CALL OCLOSE(CUR1)
CALL OCLOSE (CUR2)

LOGOFF FROM ORACLE

o NoNQ]

CALL OLOGOF (LDA)

STOP 'END OF SAMPL1'

10000 CALL ERRRPT(LDA,CUR1l,CUR2)
GO TO 5000

END

SUBROUTINE ERRRPT(LDA,C1,C2)

ERRRPT PRINTS THE CURSOR NUMBER, THE ERROR CODE, AND THE
ORACLE FUNCTION CODE. IF THE LDA CONTAINS AN ERROR CODE,
A LOGON ERROR IS ASSUMED

LDA IS THE LOGON DATA AREA ARRAY
Cl IS THE FIRST CURSOR ARRAY
C2 IS THE SECOND CURSOR ARRAY

OO000000n

6-46

C
INTEGER*2 LDA(32),C1(32),C2(32)
IF (LDA(1).EQ.0) GO TO 100
WRITE (5,10)LDA(1)

10 FORMAT('OLogon error: ',I5)

GO TO 500

100 IF (Cl(l).EQ.0) GO TO 200
WRITE (5,110) 1,Cl1(1),Cl(6)

110 FORMAT('QOORACLE error on cursor ',Il,
1 ': CODE IS ',I5,', OP IS ',I5)
GO TO 500

200 IF (C2(l).EQ.0) GO TO 300
WRITE (5,110),2,C2(1),C2(6)
GO TO 500

300 WRITE (5,310)

310 FORMAT('0Unknown ORACLE error')

500 RETURN
END
PROGRAM SAMPL2

SAMPL2 IS A SIMPLE EXAMPLE PROGRAM WHICH ADDS NEW EMPLOYEE
ROWS TO THE PERSONNEL DATA BASE. SOME CHECKING

IS DONE TO INSURE THE INTEGRITY OF THE DATA BASE.

THE PROGRAM QUERIES THE USER (VIA DEVICE 5) FOR DATA AS FOL

Enter employee number:
Enter employee name
Enter employee job
Enter employee salary:
Enter employee dept

THE NEW EMPLOYEE ROW IS INSERTED AND THE DEPARTMENT
TABLE IS UPDATED TO INCREASE THE EMPLOYEE COUNT. IF
THE EMPLOYEE NUMBER IS ENTERED AS '0', THEN THE
PROGRAM TERMINATES.

OO0O000000000000000

IMPLICIT INTEGER*2 (A-2Z)
LOGICAL*1 ENAME(11l) ,JOB(10),DEPT(20)
INTEGER*2 CURS(32,4)

LOGON TO ORACLE

OO0

CALL OLOGON(CURS(1,1))
IF (CURS(1,1).NE.0) GO TO 10000

OPEN THREE CURSORS FOR THE PERSONNEL DATA BASE

OO0

CALL OOPEN(CURS(1,2),CURS(1,1),'PERSONNEL',,,'QA/TEST')
IF (CURS(1,2).NE.0) GO TO 10000

CALL OOPEN(CURS(1,3),CURS(1,1),'PERSONNEL',,,'QA/TEST")
IF (CURS(1,3).NE.O) GO TO 10000

OO0

CALL OOPEN(CURS(1,4),CURS(l,l),'PERSONNEL',,,'QA/TEST')
IF (CURS(1,4) .NE.O) GO TO 10000

PASS THE SQL STATEMENTS TO ORACLE

CALL OSQL(CURS(1,2),'INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DE
1 <&EMPNO, &ENAME, &JOB,&SAL,&DEPTNO>; ')
IF (CURS(1,2).NE.0O) GO TO 10000

NOTE THAT THE 'NULLF' FUNCTION FORCES THE EMPCNT TO ZERO
IF IT IS NULL

ONONS]

C

1

1

CALL OSQL(CURS(1,3),'UPDATE DEPT SET EMPCNT=NULLF (EMPCNT,0)
WHERE DEPTNO=&DEPTNO;"')
IF (CURS(1,3).NE.O) GO TO 10000

CALL OSQL(CURS(1,4),'SELECT DNAME FROM DEPT WHERE
DEPTNO=&DEPTNO; ')

IF (CURS(1,4).NE.0) GO TO 10000
DEFINE A BUFFER TO RECEIVE THE DEPARTMENT NAME FOR ORACLE

CALL ODFINN(CURS(1,4),1,DEPT,20,5)
IF (CURS(1l,4).NE.0) GO TO 10000

C READ THE USER'S INPUT FROM DEVICE 5 (NORMALLY, THE TERMINAL)

c
10
100

110

120
125
130
140
145
150
153
155

158
160

QOO0

WRITE(5,100)

FORMAT('S$Enter employee number: ')
READ (5,110,END=5000,ERR=10)EMPNO
FORMAT(I5S)

IF (EMPNO.EQ.0) GO TO 5000

WRITE (5,120)

FORMAT('S$Enter employee name : ')
po 125 I=1,11

ENAME(I)=0

READ (5,130)ENAME

FORMAT(11A1l)

WRITE (5,140)

FORMAT('$Enter employee job : ")
DO 145 I=1,10

JOB(I)=0

READ (5,150)J0OB

FORMAT (10Al)

WRITE (5,155)

FORMAT('S$Enter employee salary: ')
READ (5,110,ERR=153)SAL

WRITE (5,160)

FORMAT('S$Enter employee dept : ')
READ (5,110,ERR=158)DEPTNO

BIND ALL SQL SUBSTITUTION VARIABLE VALUES
IF ANY ERRORS OCCUR, PRINT AN ERROR MESSAGE,
BUT CONTINUE.

CALL OBIND(CURS(1,2),'&EMPNO',,EMPNO,2,3)
IF (CURS(1,2).NE.0O) GO TO 1000

CALL OBIND(CURS(1l,2),'&ENAME',,ENAME,10,5)
IF (CURS(1,2).NE.0O) GO TO 1000

CALL OBIND(CURS(1,2),'s&JOB',,J0B,9,5)

IF (CURS(1,2).NE.0) GO TO 1000

CALL OBIND(CURS(1,2),'&SAL',,SAL,2,3)

IF (CURS(1,2).NE.O0) GO TO 1000

CALL OBIND(CURS(1l,2),'&DEPTNO', ,DEPTNO,2,3)
IF (CURS(1,2).NE.O) GO TO 1000

CALL OBIND(CURS(1,3),'&DEPTNO', ,DEPTNO,2,3)
IF (CURS(1,3).NE.O) GO TO 1000

CALL OBIND(CURS(1,4),'&DEPTNO',,DEPTNO,2,3)
IF (CURS(1,4).NE.O) GO TO 1000

EXECUTE THE SQL STATEMENTS. CURSOR NUMBER 3 SELECTS
'‘'DNAME' FROM THE 'DEPT' TABLE. IF THERE IS NO SUCH DEPARTM
(AS DETECTED BY A RETURN CODE OF 4 TO THE FETCH CALL), THEN
AN ERROR MESSAGE IS DISPLAYED.
CALL OEXEC(CURS(1l,4))
IF (CURS(1,4).NE.0) GO TO 1000
DO 450 I=1,20
450 DEPT(I) = O
CALL OFETCH(CURS(1,4))
IF (CURS(1,4).EQ.0) GO TO 500
IF (CURS(1,4).NE.4) GO TO 1000
WRITE (5,400)
400 FORMAT('ONo such department number')
GO TO 10

OO0

CURSOR NUMBER 1 INSERTS A NEW ROW INTO THE 'EMP' TABLE.

CALL OEXEC(CURS(1,2))
IF (CURS(1,2).NE.O) GO TO 1000

CURSOR NUMBER 2 UPDATE THE 'EMPCNT' COLUMNS IN THE 'DEPT' T

OO0 uaoOan
o
o

CALL OEXEC(CURS(1,3))
IF (CURS(1,3).NE.0) GO TO 1000
WRITE (5,600) ENAME,DEPT
600 FORMAT(' ',11Al,' added to the ',20Al,' department')
GO TO 10
1000 CALL ERRRPT(CURS(1,1),4)
GO TO 10

C CLOSE THE THREE CURSORS

C

5000 CALL OCLOSE(CURS(1,2))
CALL OCLOSE(CURS(1,3))
CALL OCLOSE(CURS(1,4))

LOGOFF FROM ORACLE

OO0

CALL OLOGOF(CURS(1,1))

STOP 'END OF SAMPL2'
10000 CALL ERRRPT(CURS(1,1),4)

GO TO 5000

END

SUBROUTINE ERRRPT(CURS,N)

ERRRPT PRINTS THE CURSOR NUMBER, THE ERROR CODE, AND THE
ORACLE FUNCTION CODE. IF THE LDA CONTAINS AN ERROR CODE,

A LOGON ERROR IS ASSUMED

CURS IS THE CURSOR ARRAY
N IS THE NUMBER OF CURSORS (INCLUDING THE LDA) IN THE ARRAY

o000 0n

INTEGER*2 CURS(32,N)

IF (CURS(1,1).EQ.0) GO TO 100
WRITE (5,10)CURS(1,1)
10 FORMAT('OLogon error: ',I5)
GO TO 500
100 DO 110 I=1,N
IF (CURS(1,I).NE.O) GO TO 150
110 CONTINUE
150 IF (I.LE.N) GO TO 300
WRITE (5,200)
200 FORMAT('0OUnknown ORACLE error')
GO TO 500
300 WRITE (5,400)I,CURS(1,I),CURS(6,I)
400 FORMAT('0OORACLE error on cursor 'L,I1I1,
1 ': code is ',I5,', op is ',I5)
500 RETURN
END

OO0O00O0000 0000000000000 00000000000n

Q0N

PROGRAM SAMPL3

SAMPL3 IS A SIMPLE EXAMPLE PROGRAM WHICH ADDS NEW EMPLOYEE

ROWS TO THE PERSONNEL DATA BASE. CHECKING

IS DONE TO INSURE THE INTEGRITY OF THE DATA BASE.

THE EMPLOYEE NUMBERS ARE AUTOMATICALLY SELECTED USING

THE CURRENT MAXIMUM EMPLOYEE NUMBER AS THE START.

IF ANY EMPLOYEE NUMBER IS A DUPLICATE, IT IS SKIPPED.

THE PROGRAM QUERIES THE USER (VIA DEVICE 5) FOR DATA AS FOL

Enter employee name
Enter employee job
Enter employee salary:
Enter employee dept

THE NEW EMPLOYEE ROW IS INSERTED AND THE DEPARTMENT
TABLE IS UPDATED TO INCREASE THE EMPLOYEE COUNT. IF
THE EMPLOYEE NAME IS NOT ENTERED, THEN THE PROGRAM

TERMINATES.

IF THE ROW IS SUCCESSFULLY INSERTED, THE FOLLOWING
IS PRINTED:

ENAME added to DNAME department as employee # NNNNN
IMPLICIT INTEGER*4 (A-Z)

THE MAXIMUM LENGTHS OF THE 'ENAME', 'JOB', AND 'DNAME'
COLUMNS WILL BE DETERMINED BY AN ORACLE CALL. THE
PROGRAM ASSUMES THAT THE SUM OF THE LENGTHS WILL BE

LESS THAN 100 BYTES. THE COLUMNS WILL ALL BE STORED
IN ONE ARRAY -- STRNGS.

LOGICAL*1 STRNGS(100) ,ENMFMT(6) ,JOBFMT(6) ,DEPFMT(70)
INTEGER*2 CURS(32,6)
LOGON TO ORACLE

CALL OLOGON(CURS(1,1))
IF (CURS(1,1).NE.O) GO TO 10000

OPEN FIVE CURSORS FOR THE PERSONNEL DATA BASE

oNoNeoKe! oNoKe! aO0n OO0 o NORS NSNS

oo N RO R

CALL OOPEN(CURS(l,Z),CURS(l,l),“PERSONNEL',,

IF (CURS(1,2).NE.0) GO TO 10000

CALL OOPEN(CURS(1,3),CURS(1,1),'PERSONNEL'
IF (CURS(1,3).NE.0O) GO TO 10000

CALL OOPEN(CURS(1,4),CURS(1,1),'PERSONNEL'
IF (CURS(1,4).NE.0) GO TO 10000

CALL OOPEN(CURS(1,5),CURS(1,1),'PERSONNEL'
IF (CURS(1,5).NE.0) GO TO 10000

CALL OOPEN(CURS(1,6),CURS(1,1),'PERSONNEL’
IF (CURS(1,6).NE.0) GO TO 10000

,"QA/TEST')

+v0"QA/TEST'")

v o0 'QA/TEST'")

¢+ v 0" QA/TEST')

v o0 "QA/TEST')

RETRIEVE THE CURRENT MAXIMUM EMPLOYEE NUMBER

PASS THE SQL STATEMENT TO ORACLE

CALL OSQL(CURS(1,2),'SELECT MAX(EMPNO) + 10 FROM EMP; ')

IF (CURS(1,2).NE.0) GO TO 10000

DEFINE A BUFFER TO RECEIVE THE MAX(EMPNO)+10 FROM ORACLE

CALL ODFINN(CURS(1,2),1,EMPNO,4,3)
IF (CURS(1,2).NE.0) GO TO 10000

EXECUTE THE SQL STATEMENT

CALL OEXEC(CURS(1,2))
IF (CURS(1,2).NE.0O) GO TO 10000

FETCH THE DATA FROM ORACLE INTO THE DEFINED BUFFER

CALL OFETCH(CURS(1,2))
IF (CURS(1,2).EQ.0) GO TO 50
IF (CURS(1,2).NE.4) GO TO 10000

CURSOR RETURN CODE 4 MEANS THAT NO ROW SATISFIED THE QUERY,

SO GENERATE THE FIRST EMPNO

EMPNO=10
CONTINUE

DETERMINE THE MAX LENGTH OF THE EMPLOYEE NAME AND JOB TITLE

PASS THE SQL STATEMENT TO ORACLE. IT WILL NOT BE EXECUTED.

CALL OSQL(CURS(1,2),'SELECT ENAME,JOB FROM EMP; ')
IF (CURS(1,2).NE.0O) GO TO 10000

C
C CALL ORACLE TO DESCRIBE THE TWO FIELDS SPECIFIED IN THE ABO
C SOL STATEMENT. WE ARE ONLY CONCERNED ABOUT THE LENGTH.
C
CALL ODSRBN(CURS(1,2),1,ENAMEL)
IF (CURS(1,2).NE.0) GO TO 10000
CALL ODSRBN(CURS(1,2),2,J0BL)
IF (CURS(1,2).NE.O) GO TO 10000
C
C PUT THE LENGTHS INTO THE FORMATS SO THAT THE ENAME AND JOB
C COLUMNS WILL BE PRINTED CORRECTLY.
C

ENCODE(6,60, ENMFMT) ENAMEL
60 FORMAT('(',I2,'Al)")
ENCODE(6,60,JOBFMT) JOBL

PASS THE SQL STATEMENTS TO ORACLE

Q00

CALL OSQL(CURS(1,2),'INSERT INTO EMP (EMPNO, ENAME,JOB, SAL,DE
1 <&EMPNO, &ENAME, &JOB, &SAL,&DEPTNO>; ')
IF (CURS(1,2).NE.O) GO TO 10000

CALL OSQL(CURS(1,3),'UPDATE DEPT SET EMPCNT=NULLF (EMPCNT,0)

1 WHERE DEPTNO=&DEPTNO;')
IF (CURS(1,3).NE.O) GO TO 10000
CALL OSQL(CURS(1,4),'SELECT DNAME FROM DEPT WHERE

1 DEPTNO=&DEPTNO; ')
IF (CURS(1,4) .NE.O) GO TO 10000

CALL OSQL(CURS(1,5),'BEGIN TRANSACTION 1 ON TABLE EMP,DEPT

1 UPDATE;"')
IF (CURS(1,5).NE.O) GO TO 10000

CALL OSQL(CURS(1,6),'END TRANSACTION 1;')
IF (CURS(1,6).NE.0O) GO TO 10000

CALL ORACLE TO DESCRIBE THE 'DNAME' COLUMNS - ONLY THE LENG
IS OF CONCERN

aOOn0on

CALL ODSRBN(CURS(1,4),1,DEPTL)
IF (CURS(1,4).NE.O) GO TO 10000

PUT THE MAXIMUM 'DNAME' LENGTH INTO A FORMAT SO THAT IT WIL
BE PRINTED CORRECTLY.

OO aon

ENCODE(70,70,DEPFMT) ENAMEL,DEPTL
70 FORMAT('('' '',',I2,'Al,"'' added to the vte,r,12,'A1,"!

1 department as employee # '',I5)"')

6-54

C

DEFINE THE BUFFER TO RECEIVE 'DNAME' FOR ORACLE

CALL ODFINN(CURS(1,4),l,STRNGS(ENAMEL+JOBL+4),DEPTL,S)
IF (CURS(1,4).NE.O) GO TO 10000

C READ THE USER'S INPUT FROM DEVICE 5

C
100
120

140

153
155

158
300
160

oNeX®!

OO0 O0n0n

390

400

WRITE (5,120)
FORMAT('S$SEnter employee name :
READ (5,ENMFMT,END=1000)(STRNGS(J),J=1,ENAMEL)

IF (STRNGS(1l).EQ.' ') GO TO 1000
WRITE (5,140)
FORMAT('$Enter employee job : ")

READ (S,JOBFMT)(STRNGS(J),J=ENAMEL+2,ENAMEL+2+JOBL—1)
WRITE (5,155)

FORMAT('SEnter employee salary: ')

READ (5,158,ERR=153)SAL

FORMAT(1I5)

WRITE (5,160)

FORMAT('S$Enter employee dept : ')

READ (5,158,ERR=300)DEPTNO

BIND THE DEPTNO VARIABLE

CALL OBIND(CURS(1,4),'&DEPTNO',,DEPTNO,4,3)
IF (CURS(1,4).NE.O0) GO TO 700

EXECUTE THE SQL STATEMENT

CALL OEXEC(CURS(1,4))
IF (CURS(1,4).NE.O) GO TO 700

FETCH THE ROWS: DEPTNO IS A UNIQUE COLUMN, SO A MAXIMUM OF
ONE ROW WILL BE FETCHED. IF CURSOR RETURN CODE 4 IS

RETURNED, THEN THERE IS NO SUCH DEPARTMENT.

NOTE THAT THE DNAME AREA OF STRNGS WILL BE SET TO ALL NULLS
PRIOR TO THE CALL TO ORACLE

DO 390 I=ENAMEL+JOBL+4,ENAMEL+JOBL+4+DEPTL+2
STRNGS (I)=0

CALL OFETCH(CURS(1,4))

IF (CURS(1,4).EQ.0) GO TO 410

IF (CURS(1,4).NE.4) GO TO 700

WRITE (5,400)

FORMAT ('ONo such department number"')

GO TO 300

BIND ALL SQL SUBSTITUTION VARIABLE VALUES
IF ANY ERRORS OCCUR, PRINT AN ERROR MESSAGE,

BUT CONTINUE.

HOOOON

10 CALL OBIND(CURS(1,2),'&ENAME',,STRNGS(1) ,ENAMEL,1)
IF (CURS(1,2).NE.O0) GO TO 700
CALL OBIND(CURS(1,2),'&JOB',,STRNGS(ENAMEL+2),JOBL,1)
IF (CURS(1,2).NE.O) GO TO 700
CALL OBIND(CURS(1,2),'&SAL',,SAL,4,3)
IF (CURS(1,2).NE.O) GO TO 700
CALL OBIND(CURS(1,2),'&DEPTNO', ,DEPTNO,4,3)
IF (CURS(1,2).NE.0) GO TO 700
CALL OBIND(CURS(1,3),'&DEPTNO',,DEPTNO,4,3)
IF (CURS(1,3).NE.O0) GO TO 700

EXECUTE THE SQL STATEMENTS. CURSOR 5 ASKS ORACLE TO
BEGIN AN UPDATE TRANSACTION ON TABLES 'EMP' AND 'DEPT'.
ALL OTHER TRANSACTIONS ON THOSE TWO TABLES WILL BE
BLOCKED UNTIL AN 'END TRANSACTION': CURSOR 6.

oXoNo N NeoKe)

CALL OEXEC(CURS(1,5))
IF (CURS(1,5).NE.0) GO TO 700

BIND THE EMPNO

SO0 0

wn
o

CALL OBIND(CURS(1,2),'&EMPNO',,EMPNO,4,3)
IF (CURS(1,2).NE.O0) GO TO 700

EXECUTE THE INSERT (CURSOR 2)

Y EoNoNe]

o
o

CALL OEXEC(CURS(1,2))
IF (CURS(1,2).EQ.0) GO TO 600

IF THE CALL RETURNS CODE -9 (DUPLICATE VALUE IN INDEX), THE
GENERATE THE NEXT POSSIBLE EMPLOYEE NUMBER

QOO0

IF (CURS(1,2).NE.-9) GO TO 700
EMPNO=EMPNO+10
GO TO 450

EXECUTE THE UPDATE (CURSOR 3)

OO0

00 CALL OEXEC(CURS(1,3))
IF (CURS(1,3).NE.O) GO TO 700

530 WRITE (5,DEPFMT) (STRNGS(J) ,J=1,ENAMEL), (STRNGS(K),
1 K=ENAMEL+2+JOBL+2,ENAMEL+2+JOBL+2+DEPTL-1) ,EMPNO
GO TO 800

700 CALL ERRRPT(CURS(1,1),6)

800 CALL OEXEC(CURS(1,6))

EMPNO=EMPNO+10

GO TO 100

C
C CLOSE THE FIVE CURSORS
C
1

000 CALL OCLOSE(CURS(1,2))
CALL OCLOSE(CURS(1,3))
CALL OCLOSE(CURS{(1,4))
CALL OCLOSE(CURS(1,5))
CALL OCLOSE(CURS(1,6))

LOGOFF FROM ORACLE

OO0 0

CALL OLOGOF(CURS(1,1))

STOP 'END OF SAMPL3'
10000 CALL ERRRPT(CURS(1,1),6)

GO TO 1000

END

SUBROUTINE ERRRPT(CURS,N)

ERRRPT PRINTS THE CURSOR NUMBER, THE ERROR CODE, AND THE
ORACLE FUNCTION CODE. IF THE LDA CONTAINS AN ERROR CODE,

A LOGON ERROR IS ASSUMED

CURS IS THE CURSOR ARRAY
N IS THE NUMBER OF CURSORS (INCLUDING THE LDA) IN THE ARRAY

OO0

INTEGER*2 CURS(32,N)

IF (CURS(1l,1).EQ.0) GO TO 100
WRITE (5,10)CURS(1,1)
10 FORMAT('OLogon error: ',I5)
GO TO 500
100 po 158 I=1,N
IF (CURS(1,I).NE.O) GO TO 150
158 CONTINUE
150 IF (I.LE.N) GO TO 300
WRITE (5,200)
200 FORMAT('0Unknown ORACLE error')
GO TO 500
300 WRITE (5,400)I,CURS(1,I),CURS(6,I)
400 FORMAT('OORACLE error on cursor 'L,I1,
1 ‘s code is ',I15,', op is ',I5)
500 RETURN
END

khkhkhkhhkhkhkhkkhkhkkhkhkhhhkhkhhkhhhhhhhkhhhkhdhhhdhkhk

C

* *
* *
* *
* EXAMPLE PROGRAMS *
* *
* *

khkhkhhkhhkhhkhkhkkhkkhkhhkhhkhhkhkhhkhhkhkrkhkhhhkk

Table of Contents

samplel - INSERTS ROWS WITH NO DATA CHECKING
sample2 - INSERTS ROWS WITH SOME DATA CHECKING
sample3 - INSERTS ROWS AND INSURES DATA VALIDITY

57

/* VOID samplel

samplel is a simple example program which adds new employee
records to the personnel database. Very little
checking is done to insure the integrity of the
database. The program queries the user for data

as follows:

Enter employee number:
Enter employee name:
Enter employee job:
Enter employee salary:
Enter employee dept:

The new employee record is inserted and the department

table is updated to increase the employee count. If
the employee number is entered as '0', then the progra
terminates.

*/

#include <std.h>

char dbn[]{"personnel"}; /* data base name

char uid[]{"qa/test"}; /* user id/password

char insert[] {"INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO):\

<&EMPNO,&ENAME,&JOB,&SAL,&DEPTNO>;“};

char update[]{"UPDATE DEPT SET EMPCNT=\

NULLF (EMPCNT,0)+1 WHERE DEPTNO=&DEPTNO;"};

main()

{

/* employee number, salary
department number

int 1da[32],cursl[32],curs2([32]; /* lda and two cursors
char ename[11],job[11l]; /* employee name and Jjob

int empno,sal,deptno;

/*
log on to ORACLE, open the database (two cursors), and pass
the SQL statements to ORACLE. The program exits if any error
occur.
*/
if (ologon(lda,-1) ||
oopen(cursl,lda,dbn,—l,—l,uid,—l) 1
oopen(cursZ,lda,dbn,—l,—l,uid,—1) Il
osql (cursl,insert,-1) ||
osql (curs2,update,-1))

errrpt(lda,cursl,curs2);
goto errexit;

}

/*

*/

/*

*/

read the user's input from STDIN. If the employee number is
entered as zero (or just <cr> or if -eof- (control Z) 1s

encountered, exit.

for(;0 < askn("Enter employee number: " ,&empno) && empno != 0;
{
asks("Enter employee name " ,ename) ;
asks("Enter employee job ",job);
askn("Enter employee salary: ",&sal);
askn("Enter employee dept: " ,&deptno);

e o

bind all SQL substitution variable values and execute the SQL
insert and update. If any errors occur, print an error messag

but continue.

if (obind(cursl,"&EMPNO",-1,&empno,2,3) I
obind(cursl,"&ENAME" ,-1,ename,-1,1) ||
obind(cursl,"&JOB" ,-1,job,-1,1) ||
obind(cursl,"&SAL",-1,&sal,2,3) ||
obind(cursl,"&DEPTNO",-1,&deptno,2,3) ||
obind (curs2,"&DEPTNO",-1,&deptno,2,3) ||
oexec(cursl) I
oexec (curs2))

errrpt(lda,cursl,curs2);

}

errexit:

/*
*/

}
/*

close the cursors and log off from ORACLE

oclose(cursl);
oclose(curs2);
ologof(1lda);
return(0) ;

COUNT askn(text,variable)

*/

print the 'text' on STDOUT and read an integer variable from
SDTIN.

text points to the null terminated string to be printed
variable points to an integer variable

askn returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered

int askn(text,variable)

char text(];
int *variable;

{

return(ask("%i",text,variable));

}

60

/*
COUNT asks(text,variable)

print the 'text' on STDOUT and read up to 10 characters into
the buffer pointed to by variable from STDIN.

text points to the null terminated string to be printed
variable points to a buffer of at least 11 characters
(to insure room for the trailing NULL)

asks returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
asks(text,variable)
char text[],variable(];

return(ask("%lO.lOp",text,variable));
}

/*
COUNT ask(fmt,text,variable)

print the 'text' on STDOUT and read from STDIN according to th
format text pointed to by 'fmt'. The format string is passed
directly to the ¢ library routine 'getfmt'.

fmt points to a format string for getfmt

text points to tne null terminated string to be printed

variable points to a buffer of sufficient length to hold the
input specified by the format. No length checking is
performed.

ask returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
ask(fmt,text,variable)
char fmt{],text([],variable[];
{
putfmt ("\nsp",text);
putch(-1);
return(getfmt(fmt,variable));

/*
VOID errrpt(lda,cursl,curs2)

errrpt prints the cursor number, the error code, and the
ORACLE function code. If the lda contains an error code,
a log on error is assumed.

lda points to an ORACLE log on data area.
cursl points to an ORACLE cursor area.
curs2 points to another ORACLE cursor area.
*/
errrpt(lda,cursl,curs2)
}nt 1da[32] ,cursl1[32],curs2(32];
int curserr,cursfcn,cursnum;
if (1daf[0])
putfmt("Logon error: $i\n",1da[0]);
else
{
if (?ursl[O])
cursnum=1;
= cursl([0];
= cursl[5];

curserr
cursfcn

}

else
{
cursnum=
curserr
cursfcn
}

putfmt ("ORACLE error on cursor gi: \

code is %i, op is %i\n",cursnum,curserr,cursfcn);
}
return(0) ;

}

curs2[0];
curs2([5];

[T N

6-63

/* VOID sample?2

sample2 is a simple example program which adds new employee
records to the personnel database. Some checking
is done to insure the integrity of the data base.
The program queries the user for data as follows:

Enter employee number:
Enter employee name:
Enter employee job:
Enter employee salary:
Enter employee dept:

The new employee record is inserted and the department
table is updated to increase the employee count. If
the employee number is not entered, then the program

terminates.

*/

#include <std.h>

char dbn[] {"personnel"}; /* data base name
char uid([] {"qa/test"}; /* user id/password
char insert[] {"INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO) :\
<&EMPNO,&ENAME,&JOB,&SAL,&DEPTNO);"};

char update[] {"UPDATE DEPT SET EMPCNT=\

NULLF(EMPCNT,0)+1 WHERE DEPTNO=&DEPTNO; "} ;

char select[]{"SELECT DNAME FROM DEPT WHERE \

DEPTNO=&DEPTNO;"};

main()
int empno,sal,deptno; /* employee number, salary
department number
int curs[4])[32]; /* lda and three cursors
char ename[11],job[11],dept[21]; /* employee name,job,dept
/*
log on to ORACLE, open the data base (three cursors), and pars
the SQL statements. The program exits if any errors occur.
*/

if (ologon(curs[0],-1) ||

oopen(curs[1l],curs([0] ,dbn,-1,-1,uid,-1) ||
oopen(curs[2],curs[0] ,dbn,-1,-1,uid,-1) ||
oopen(curs(3],curs(0],dbn,-1,-1,uid,-1) ||
osql (curs[l],insert,-1) ||

osql (curs[2],update,-1) ||

osql (curs[3],select,-1) ||

odfinn (curs{3},1,dept,21,5,-1))

errrpt(curs[0],4);
goto errexit;

}

/*
read the user's input from STDIN.
entered as zero (or just <cr> or i

encountered,exit.
verify that the entered department number is valid

departments name

If the employee number 1is
f -—eof- (control Z) is

and echo th

*/
for(;0 < askn("Enter employee number: ", sempno) && empno != 0;

{

asks("Enter employee name : " ,ename) ;
asks("Enter employee job : ",job);
askn("Enter employee salary: " ,&sal);
askn("Enter employee dept: " s&deptno) ;

/*
bind all SQL substitution variable values and execute the SQL
statements. If any errors occur, print an error message,
then continue.
*/
if (obind(curs[l],"&EMPNO",—l,&empno,2,3) |1
obind(curs[l],"&ENAME",—l,ename,—l,l) (N
obind(curs[l],"&JOB",—l,job,—l,l) |
obind(curs[l],"&SAL",—l,&sal,2,3) I
obind(curs[l],"&DEPTNO",—1,&deptno,2,3)||
obind(curs[Z],"&DEPTNO“,—1,&deptno,2,3)||
obind(curs[3],"&DEPTNO",-1,&deptno,2,3)II
oexec(curs([3]) |
ofetch(curs(3]) I
oexec(curs[1]) I
oexec(curs[2]))
{
if (curs([3]([0]==4)
putfmt ("\nNo such department number\n") ;
else
errrpt(curs(0],4);
}

else
putfmt ("\n%p added to the $p department\n",ename,dept

}
errexit:
/*
close the cursors and log off from ORACLE
*/
oclose(curs([l]);
oclose(curs[2]);
ologof(curs([0]);
return(0);

/*
COUNT askn(text,variable)

print the 'text' on STDOUT and read an integer variable from
SDTIN.

text points to the null terminated string to be printed
variable points to an integer variable

askn returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
int askn(text,variable)
char text[];
int *variable;
{

return(ask("gi",text,variable));

/*
COUNT asks(text,variable)

print the 'text' on STDOUT and read up to 10 characters into
the buffer pointed to by variable from STDIN.

text points to the null terminated string to be printed
variable points to a buffer of at least 11 characters

(to insure room for the NULL)

asks returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
asks(text,variable)
char text[],variable[];

{ .
return(ask("$10.10p",text,variable));

}
/*
COUNT ask(fmt,text,variable)
print the 'text' on STDOUT and read from STDIN according to th

format text pointed to by 'fmt'. The format string is passed
directly to the c library routine 'getfmt'.

fmt points to a format string for getfmt

text points to tne null terminated string to be printed

variable points to a buffer of sufficient length to hold the
input specified by the format. No length checking is
performed.

ask returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*/
ask(fmt,text,variable)
char fmt[],text[],variable(];

{

putfmt ("\ngp",text);
putch(-1);
return(getfmt(fmt,variable));

/*
VOID errrpt(cur,n)

errrpt prints the cursor number, the error code, and the
ORACLE function code. If the lda contains an error code,
a log on error is assumed.

cur points to an ORACLE cursor array. curs[0] is assummed to b
the lda.
n the the number of cursors in the array (including the lda)
*/

errrpt(cur,n)

int n;
int cur[]([32];

int i;

if (cur[0]([0])
putfmt ("Logon error: %i\n",cur[0][0]);

else

{

for (i=1l;i>=n|lcur[i][0]}!=0;i+=1){}
if (i==n)

putfmt ("Unknown ORACLE error\n");
else

putfmt ("ORACLE error on cursor %$i: \
code is %i, op is si\n",i,cur[i][0],cur{i][5]);

return(0);

}

/* VOID sample3

sample3 is a simple example program which adds new employee
records to the personnel data base. Checking
is done to insure the integrity of the data base.
The employee numbers are automatically selected using

the current maximum employee number as the start.
If any employee number is a duplicate, it is skipped.
The program queries the user for data as follows:

Enter employee name:
Enter employee job:
Enter employee salary:
Enter employee dept:

The new employee record is inserted and the department
table is updated to increase the employee count. If
the employee name is not entered, then the program
terminates.

If the record is successfully inserted, the following
is printed:

ename added to department dname as employee # nnnnnn

*/

#include <std.h>

char dbn[]{"personnel"}; /* data base name
char uid[] {"qa/test"}; /* user id/password

char insert(] {"INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,DEPTNO):\

<&EMPNO,&ENAME,&JOB,&SAL,&DEPTNO>;"};

char update[] {"UPDATE DEPT SET EMPCNT=\
NULLF(EMPCNT,0)+1 WHERE DEPTNO=&DEPTNO; " };
char select[]{"SELECT DNAME FROM DEPT WHERE \

DEPTNO=&DEPTNO; " };
char maxemp[]{"SELECT MAX(EMPNO) + 10 FROM EMP;"};

char selemp([] {"SELECT ENAME,JOB FROM EMP;"1}; /* used to determi
ename, job size

char begtrn[] {"BEGIN TRANSACTION 1 ON TABLE EMP,DEPT UPDATE;"};
char endtrn[] {"END TRANSACTION 1;"};
main()

/* employee number, salary
department number

int curs([6][32]; /* 1da and three cursors

char strings[100]; /* employee name,job,dept

int enamel,jobl ,deptl; /* the max length of cols

int empno,sal,deptno;

/*

*/

/*

*/

log on to ORACLE, open the data base (three cursors), and pars
the SQL statements. The program exits if any errors occur.
Determine the lengths of the variable length strings via ODSRB

if (ologon(curs[0],-1) ||

oopen(curs[l],curs[O],dbn,~l,—1,uid,-1) ||
oopen(curs[Z],curs[O],dbn,—l,—l,uid,—l) [1
oopen(curs[B],curs[O],dbn,-l,—l,uid,—l) |
oopen(curs[4],curs[0],dbn,-l,—l,uid,-l) |
oopen(curs[S],curs[O],dbn,-l,—l,uid,—l))

{

errrpt(curs(0],6);

goto errexit;

}

/*
retrieve the current maximum employee number

*/

if (osqgl(curs[l] ,maxemp,-1) ||
odfinn(curs(1],1,&empno,2,3,-1) ||
oexec(curs[1l]) 11|

ofetch(curs([1l]))

{
if(curs[1][0]==4) empno=10;
else
{
errrpt(curs(0],6);
goto errexit;
}
}

determine the max length of the employee name and job title

if (osqgl(curs[l],selemp,-1) ||
odsrbn(curs([1],1,&enamel,-1,-1) |
odsrbn(curs[1],2,&jobl,-1,-1) ||
odfinn(curs([l1l],1,strings,enamel,l,-1) |1
?dfinn(curs[l],2,&strings[enamel+l],jobl,l,—l))
errrpt(curs([0],6);
goto errexit;

}

/%
*/

/*

*/

/*

*/

parse the insert, select, and update statements

if (osgl (curs[2],update,-1) | |
osql (curs([3],select,-1) |
osql (curs[l],insert,-1) |
osql (curs(4] ,begtrn,-1) |
osql (curs([5],endtrn,-1) |
odsrbn(curs(3],1,&deptl,-1,-1) ||
odfinn (curs[3],1,&strings[enamel+job1+2],deptl,S,—l))

{

errrpt(curs[0],6);

goto errexit;

}

read the user's input from STDIN.

not entered, exit.
Verify that the entered department num

department's name

I
I
|
l
r

If the employee name is

ber is valid and echo th

for(;0 < asks("Enter employee name : ",\
strings,enamel) ;empno+=10)

{

asks("Enter employee job : ",&strings[enamel+l],jobl);
askn("Enter employee salary: ",&sal);

for (;0>=askn("Enter employee dept : » ,&deptno) | |
obind(curs[3],"&DEPTNO",—l,&deptno,2,3)ll

oexec(curs([3]) I

ofetch(curs(31);
putfmt ("\nNo such department\n")) {}

bind all SQL substitution variable values and execute the SQL
statements. If any errors occur, print an error message,

then continue.

if (obind(curs[l],"&ENAME",—1,strings,-1,1) |1

obind(curs[l],"&JOB“,—1,&strings[ename1+1],—1,1)
obind(curs[1],"&SAL",-1,&sal,2,3) | |
obind(curs[1l],"&DEPTNO",-1,&deptno,2,3) ||
obind(curs[2],"&DEPTNO",—1,&deptno,2,3)II
oexec(curs([4]))

errrpt(curs[0],6);

else

{
for (; 0==obind(curs([1l],"&EMPNO",-1,&empno,2,3) &&

-9==cexec (curs[1l]);empno+=10)
/* test code */
{

errrpt(curs(0],6);

/* end of test code */

if (curs{1][0])
errrpt(curs{0],6);
else
{
if (oexec(curs(2]))
errrpt(curs[0],6);
else
putfmt ("\ntp added to the %p department \

as employee number %i\n",\
strings,&strings[enamel+jobl+2],empno);
}

if (oexec(curs[5]))
errrpt(curs(0]),6);

’ }
}
errexit:
/*
close the cursors and log off from ORACLE
*/

oclose(curs[1]
oclose(curs[2]
oclose(curs[3]
oclose(curs([4]
oclose(curs([5]
ologof(curs(0]
return(0);

R i et
W We N Ne W o

}
/*
COUNT askn(text,variable)

print the 'text' on STDOUT and read an integer variable from
SDTIN.

text points to the null terminated string to be printed
variable points to an integer variable

askn returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered
*x/
int askn(text,variable)
char text(];
int *variable;

return(ask("si",text,variable));

}

/*

COUNT asks(text,variable,len)

*/

print the 'text' on STDOUT and read up to 'len' characters int
the buffer pointed to by variable from STDIN.

text points to the null terminated string to be printed
variable points to a buffer of at least 'len'+l characters

asks returns the number of character read into the string, or
-1 if -eof- was encountered

asks(text,variable,len)

/*

char text[],variable[];

{

char fmt[14],lens([6];

int x;

x=itob(lens,len,10);

lens[x]='\0";

cpystr(fmt,"%",lens,".",lens,"p",NULL);
return(EOF==ask(fmt,text,variable)?EOF:lenstr(variable));

}

COUNT ask(fmt,text,variable)

*/

print the 'text' on STDOUT and read from STDIN according to tb
format text pointed to by 'fmt'. The format string is passed

directly to the c library routine 'getfmt'.

fmt points to a format string for getfmt

text points to tne null terminated string to be printed

variable points to a buffer of sufficient length to hold the
input specified by the format. No length checking is

performed.

ask returns a 1 if the variable was read successfully or a
-1 if -eof- was encountered

ask(fmt,text,variable)

char fmt[],text[],variable[];

putfmt ("\nsp",text);
putch(-1);
return(getfmt (fmt,variable));

/*
VOID errrpt(cur,n)

errrpt prints the cursor number, the error code, and the
ORACLE function code. 1If the lda contains an error code,
a log on error is assumed.

cur points to an ORACLE cursor array. curs[0] is assummed to b
the lda.
n the the number of cursors in the array (including the lda)
*/
errrpt{(cur,n)
int n;
int cur[](32];

int i;

if (curfo0]({0])
putfmt ("Logon error: %i\n",cur(0][0]);
else

{

for (i=1;i<n&&cur[i] [0]==0;i+=1) {}

if (i==n)
putfmt ("Unknown ORACLE error\n");
else

putfmt ("ORACLE error on cursor %i: \
code is %i, op is $i\n",i,cur(i] [0],cur([i] [5]);

return(0);

}

*‘k’k‘k***‘k*********************************

C OB OL

* *
* *
* *
* EXAMPLE PROGRAM *
* *
* *

Table of Contents

ORACBL - INSERTS ROWS AND PRINTS EMP TABLE

IDENTIFICATION DIVISION.
PROGRAM-ID. ORACBL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-11.
OBJECT-COMPUTER. PDP-11.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LDA.
02 LDA-RC PIC S9999 COMP.
02 FILLER PIC S9999 COMP OCCURS 31 TIMES.
01 CURSOR.
02 C-RC PIC S9999 COMP.
02 C-TYPE PIC S9999 COMP.
02 C-ROWS PIC S9(9) COMP.
02 C-OFFS PIC S9999 COMP.
02 C-FNC PIC S9999 COMP.
02 FILLER PIC S9999 COMP OCCURS 26 TIMES.
77 AREA-COUNT PIC S9999 VALUE 1 COMP.
77 AREA-SIZE PIC S9999 VALUE 3 COMP.
77 DATA-BASE PIC X(16) VALUE "personnel”.
77 DATA-BASE-L PIC S9999 VALUE 9 COMP.

77 USER-ID PIC X(8) VALUE "qa/test".

77 USER-ID-L PIC S9999 VALUE 7 COMP.

77 SQL-SEL PIC X(40) VALUE "SELECT EMPNO,ENAME FROM EMP".

77 SQL-SEL-L PIC S9999 VALUE 40 COMP.

77 SQL-INS PIC X(40) VALUE "INSERT INTO EMP:<&EMPNOX,&ENAMEX

77 SQL-INS-L PIC S9999 VALUE 40 COMP.

77 EMPNO-RC PIC S9999 COMP.

77 EMPNO-N PIC S9999 VALUE 1 COMP.

77 ENAME PIC X(19).

77 ENAME-L PIC S9999 VALUE 10 COMP.

77 ENAME-RC PIC S9999 COMP.

77 ENAME-N PIC S9999 VALUE 2 COMP.

77 FTYPE PIC S9999 COMP.

77 ERRTYPE PIC +9999.

77 EMPNOX PIC S9(9) COMP VALUE O.

77 EMPNOX-L PIC S9999 VALUE 4 COMP.

77 EMPNOX-N PIC X(7) VALUE "“&EMPNOX".

77 EMPNOX-N-L PIC S9999 COMP VALUE 7.

77 ENAMEX-N PIC X(7) VALUE "&ENAMEX".

77 ENAMEX-N-L PIC S9999 COMP VALUE 7.

77 INT4 PIC S9999 COMP VALUE 3.

77 ASC PIC S9999 COMP VALUE 1.

77 EMPNOX-A PIC S9(9) SIGN LEADING SEPARATE DISPLAY
VALUE -1.

77 EMPNOX-A-X REDEFINES EMPNOX-A PIC X(10).
77 EMPNOX-A-L PIC S9999 COMP VALUE 10.

77 MSG-TO-OP PIC X(45) VALUE
nyasnrnannns pnter new empno (+]- and 9 digits)

76

PROCEDURE DIVISION.
BEGIN.
*

* LOGON TO ORACLE
*
CALL "OLOGON" USING LDA-RC,AREA-COUNT.
IF LDA-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-STOP.

*

OPEN THE PERSONNEL DATA BASE

CALL "OOPEN" USING C-RC,LDA-RC,DATA-BASE,DATA-BASE-L,
"AREA-SIZE,USER-ID,USER-ID-L.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-LOGOF.

*

INSERT A RECORD

CALL "OSQL" USING C-RC,SQL-INS,SQL-INS-L.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.
INSERT-ONE.
DISPLAY MSG-TO-OP.
ACCEPT EMPNOX-A.
IF EMPNOX-A = 0 GO TO SELECT-IT.
MOVE EMPNOX-A TO EMPNOX.
CALL "OBIND" USING C-RC,EMPNOX-N,EMPNOX-N-L,EMPNOX,
“ EMPNOX-L,INT4.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO INSERT-ONE.
CALL "OBIND" USING C-RC,ENAMEX-N,ENAMEX-N-L,EMPNOX-A-X,
EMPNOX-A-L,ASC.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO INSERT-ONE.
CALL "OEXEC" USING C-RC.
IF C-RC NOT = 0 PERFORM ORA-ERR.
GO TO INSERT-ONE.
*

* PARSE THE SELECT
*
SELECT-IT.
CALL "OSQL" USING C-RC,SQL-SEL,SQL-SEL-L.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.
*

* DEFINE THE RECEIVING DATA AREAS
*
CALL "ODFINN" USING C-RC,EMPNO-N,EMPNOX,EMPNOX-L,INT4,
EMPNO-RC.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.
CALL "ODFINN" USING C-RC,ENAME-N,ENAME,ENAME-L,ASC,
ENAME-RC.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.

*

* EXECUTE THE QUERY BLOCK
*

CALL "OEXEC" USING C-RC.

IF C-RC NOT = 0 PERFORM ORA-ERR GO TO EXIT-CLOSE.

FETCH-ONE.
*

* BLANK ALPHA AREAS AND FETCH THE ROWS
*
MOVE SPACES TO ENAME.
CALL "OFETCH" USING C-RC.
IF ENAME-RC NOT = 0
MOVE ENAME-RC TO ERRTYPE

DISPLAY "NON-ZERO RETURN ON FETCH OF ENAME; CODE IS

ERRTYPE.
IF C-RC NOT = 0 PERFORM ORA-ERR GO TO

MOVE EMPNOX TO EMPNOX-A.

DISPLAY "EMPNO = " ,EMPNOX-A," ;ENAME =
GO TO FETCH-ONE.

EXIT-S.

EXIT-CLOSE.

*

* CLOSE THE DATA BASE
*

CALL "OCLOSE" USING C-RC.

IF C-RC NOT = 0 PERFORM ORA-ERR.
EXIT-LOGOF.
*

* LOG OFF FROM ORACLE
*
CALL "OLOGOF" USING LDA-RC.
IF LDA-RC NOT = 0 PERFORM ORA-ERR.
EXIT-STOP.
STOP RUN.
ORA-ERR.
*

* PRINT ORACLE ERROR NOTICE
*

DISPLAY "ORACLE ERROR"
MOVE C-FNC TO ERRTYPE.

DISPLAY "ORACLE FUNCTION = ",ERRTYPE.
MOVE LDA-RC TO ERRTYPE.
DISPLAY "LDA ERROR = ",ERRTYPE.

MOVE C-RC TO ERRTYPE.
DISPLAY "CUR ERROR = " ,ERRTYPE.

EXIT-S.

" ,ENAME.

on
:

14

9]
|

78

ORACLE

ASSEMBLY LANGUAGE INTERFACE

To use the ORACLE user interface from a MACRO-11 language
the programmer must invoke and use the CCALL macro

program,
as described below.

The CCALL macro works as follows:

The CCALL macro is the SDLLIB.MLB. The user must
include this library as part of his assembly.

The CCALL macro is invoked with the .MCALL directive.

The format of the CCALL macro is:

CCALL FUNC,Pl,...,Pn

where:

FUNC

Pl,...,PZ

is the function to be called (e.g.
OOPEN, 0OSQL,...)

is the parameter list as defined in the
programming interface. All of the
parameters must be able to be objects of
a MOV instruction. A parameter can be a
list of values, in which case the values
are added together before they are put in
the parameter list. An example of this
is <R1l,#OFFSET>. This would cause Rl and
#OFFSET to be added together to produce a
single parameter for the parameter list.
This mechanism allows users to easily
pass pointers to a data area in a
structure pointed to by a register.
Also, if the first item in this list is
'B' then the next item in the list is a
byte and must be able to be the object of
a MOVB instruction.

An example of the CCALL macro:

CURSOR: .BLKB 64.
LDA: .BLKB 64.
DBNAME: .ASCIZ /ACCOUNTING/
CCALL OOPEN, #CURSOR, #L.DA ,#DBNAME, #-1,#-1

when calling an ORACLE function, registers RO and Rl
are volatile and may be destroyed.

Upon return from an ORACLE function, RO contains the
return code (the first word of the cursor) .

To include the MACRO-11 interface to ORACLE the user
should follow the instructions that C programmers do
to include the C interface.

ORACLE

HOST LANGUAGE INTERFACE

LINKING INSTRUCTIONS FOR RSX/IAS

When a user wishes to create his or her own database task,
the distributed user interface modules must be included in
the task image. The user code interface is provided in four
object libraries:

* OFOLIB.OLB
* OCELIB.OLB
* ORALIB.OLB

* CLIB.OLB

The first two libraries, OFOLIB and OCELIB, provide the Host
Language Interface between a host language, such as FORTRAN,
and ORACLE. The libraries are used in the following way in
the task build:

OCELIB/LB:ORACEE for C and assembly language programs
OFOLIB/LB:ORAFOR for FORTRAN and COBOL programs

The third library, ORALIB, contains object code which has
several responsibilities. The first is to provide the
primary intertask communication and handshake between the
user task and ORACLE via the SDAT$ and RCVD$ system service
routines. The second function provides the user interface to
the ORACLE context region. This region is used by the user
interface to pass commands and data to ORACLE and used in
turn by ORACLE to pass data back to the user. This module
will identify the user task name to ORACLE and then wait to
receive a mapping context message from ORACLE. Upon the
completion of this initialization, the user task may enter

into transactions with ORACLE.

The fourth library contains common routines used by the 'C'
language programs in OFOLIB, OCELIB, and ORALIB.

LINKING AN RSX-11M TASK

Two special steps must be taken to include the ORACLE

Interface program in a user task.

1. 1Include OFOLIB or OCELIB, ORALIB, and CLIB in the list of

library files.

2. Add an extra address window at task build time.

Examples:

The TKB command input which builds the SAMPL1 FORTRAN
program:

SAMPL1/-FP,SAMPL1/-SP
SAMPL1,[1,1)F4PEIS,[1,1]F4POTS/LB
(1,1)OFOLIB/LB:ORAFOR
(1,1]O0RALIB/LB

(1,1]CLIB/LB

/

WNDWS=1

STACK=3000

UNITS=13

//

The TKB command input which builds the sample3 "C" program:

sample3/cp,sample3/-sp
sample3
[1,1]ocelib/lb:oracee
[1,1]oralib/1b
[1,1]clib/lb:chdr
[(1,1]clib/1lb

/

stack=3000
units = 13
wndws = 1

extsct=5$99998:3000
//

6-82

LINKING AN IAS TASK

Two special steps are required to include the ORACLE
Interface in a user task.

1. Include OFOLIB, OCELIB or ORALIB, and CLIB in the list of
object files;

2. Add an extra region descriptor block;

Examples:
The command input to TKB to build the SAMPL1 FORTRAN

program:

SAMPL1/CP/-FP,SAMPL1/-SP
SAMPL1

F4POST/LB
OFOLIB/LB:ORAFOR
ORALIB/LB
CLIB/LB

/

STACK=3000

UNITS = 13

ATRG = 1

//

The command input to TKB to build the sample3 "C" program:

sample3/cp,sample3/-sp
sample3
ocelib/lb:oracee
oralib/1lb
clib/1lb:chdr
clib/1b

/

stack=3000

units = 13

atrg =1
extsct=$99998:3000
//

Note: if a user task is multi-user, the task must have a name
of the form: $$S$Sabc

SYSTEM RESOURCES FOR PDP-11 PROGRAMS

ORACLE makes use of certain system resources which are
discussed here to prevent conflict with user software.

SEND/RECEIVE DATA directives may not be used.

Neither SQL statements nor data to be used by ORACLE may
reside in locations mapped to addresses 140000(8) through

177777(8) .

None of the modules included from the ORACLE libraries
(OFOLIB, OCELIB, ORALIB, and CLIB) may be mapped by an
address window whlch also maps virtual locations 140000(8)

through 177777(8) .

Programs which are larger than 140000(8) bytes should use an
overlay structure in which the ORACLE library modules are in
the root and the remainder of the program is in a memory
resident overlay. An example task builder imput file is
contained in DBFTKB.CMD and DBF.ODL which follow.

DBFTKB.CMD (referenced by TKB @DBFTKB on RSX11lM systems):

DBF/CP,DBF/-SP=DBF/MP
STACK=3000

UNITS=13

WNDWS=1

TASK=...DBF

ASG=TI:13
EXTSCT=$99998:4000

/

DBF.ODL (referenced above in the first TKB command line):

.ROOT DBF010-*! (DBF0O40-DBF050)
DBF010: .FCTR DBF020-DBF025~DBF030
DBF020: .FCTR CLIB/LB:CHDR:.END:SBREAK
DBF025: .FCTR DBFLIB/LB:DBFKNL:DBFDTA
DBF030: .FCTR CLIB/LB-OCELIB/LB:ORACEE-ORALIB/LB-CLIB/LB
DBF040: .FCTR DBFLIB/LB:MAIN-DBFLIB/LB
DBF050: .FCTR ORALIB/LB-CLIB/LB
.END

LINKING INSTRUCTIONS FOR VAX/VMS

Two object libraries provide the native mode user code
interface on the VAX/VMS distribution:

* ORALIB.OLB
* CLIB.OLB

The first library, ORALIB, provides the Host Language
Interface between a host language, such as FORTRAN, and
ORACLE. The library also contains an object code which has
several responsibilities. The first is to provide for the
creation of and subsequent communication with a detached
ORACLE process. The second function provides the user
interface to the ORACLE context region. This region is used
by the user interface to pass commands and data to ORACLE and

used in turn, by ORACLE to pass data back to the user.

It should be noted a user image must reserve the address
range 0C000-10000 (hex). This is may be accomplished by

including the distributed pad option file in your 1link
command. (Note the inclusion of ORAPAD.OPT in the example,

below) .

A sample command procedure for linking a "C" program 1is
listed below:

UFILNK.COM

VAX/VMS UFI LINK COMMAND FILE

“nnunnn
- 0= G o

$DEL UFI.EXE;*,UFI.MAP;¥*

SLINK /EXE=UFI/MAP=UFI -
CLIB/INCLU=CHDR/LIBR,-
UFILIB/INCLU=UFIPAD/LIBR,-
ORAPAD/OPTIONS, -
ORALIB/LIBR,-

CLIB/LIBR

A sample command procedure for linking a FORTRAN program is
listed below:

St
St SAMPLE FORTRAN/ORACLE LINK PROCEDURE
St
SLINK /EXE=SAMPL1/MAP=SAMPL1 -
SAMPL1, -
ORALIB/LIBR, -
ORAPAD/OPTIONS, - ! PADS 0C000-10000

CLIB/LIBR

